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a b s t r a c t

We implement, optimize, and validate the linear-scalingKubo–Greenwoodquantum transport simulation
on graphics processing units by examining resonant scattering in graphene. We consider two practical
representations of the Kubo–Greenwood formula: a Green–Kubo formula based on the velocity auto-
correlation and an Einstein formula based on the mean square displacement. The code is fully
implemented on graphics processing units with a speedup factor of up to 16 (using double-precision)
relative to our CPU implementation. We compare the kernel polynomial method and the Fourier
transformmethod for the approximation of the Dirac delta function and conclude that the former is more
efficient. In the ballistic regime, the Einstein formula can produce the correct quantized conductance of
one-dimensional graphene nanoribbons except for an overshoot near the band edges. In the diffusive
regime, the Green–Kubo and the Einstein formalisms are demonstrated to be equivalent. A comparison
of the length-dependence of the conductance in the localization regime obtained by the Einstein formula
with that obtained by the non-equilibriumGreen’s functionmethod reveals the challenges in defining the
length in the Kubo–Greenwood formalism at the strongly localized regime.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum simulations are very important tools to study trans-
port phenomena in the nanoscale, both for electrons and phonons.
There are mainly two numerical approaches for quantum trans-
port simulations: one is the widely used non-equilibrium Green’s
function (NEGF) method [1] and the other is the Kubo–Greenwood
method [2,3]. Both methods have been widely used to study the
electronic transport properties of graphene, a two-dimensional
sheet of carbon atoms [4,5]. Despite this, the field of electronic
transport in graphene has remained very actively debated.

So far, the NEGFmethod has beenmostly used to simulate rela-
tively small systems, due to the cubic scaling of the computational
effort associated with matrix inversion. Although an efficient it-
erative method [6] enables the simulation of very long systems,
this method is still restricted to studying quasi-one-dimensional
(1D) systems, such as carbon nanotubes and graphene nanorib-
bons (GNRs). However, many realistic systems exhibit structural
length scales up to several micrometers. Examples of these include
large-scale two-dimensional (2D) graphene antidot lattices [7]
and polycrystalline graphene produced by chemical vapor depo-
sition [8]. Furthermore, inmany applications, graphene-basedma-
terials have to be fabricated or assembled into three-dimensional
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(3D) architectures, which require even larger simulation sizes. The
application of the NEGF method to these realistically sized 2D and
3D systems is still not feasible.

In contrast, for the Kubo–Greenwood method, a real-space
linear-scaling method has been developed [9–12] and used to
study transport properties of both quasi-1D systems [13–15] and
2D graphene sheets [16–23]. Moreover, this method has been gen-
eralized to studying thermal conductivity [24]. Besides the real-
space Kubo method [9–12], which expresses the conductivity as a
time-derivative of the mean square displacement, another seem-
ingly different approach [25],which expresses the conductivity as a
time-integration of the velocity auto-correlation function, has also
been used to study the electronic transport properties of large-
scale single-layer [25,26] and multi-layer [27] graphene sheets,
and disordered graphene antidot lattices [28].

Although both of the above methods are based on the Kubo–
Greenwood formula, no connection has beenmade between them.
One of our purposes is to identify the time-derivative approach
and the time-integration approach as an Einstein relation and
the corresponding Green–Kubo relation and demonstrate their
equivalence numerically. Furthermore, a thorough validation of
Kubo–Greenwood formula-based quantum transport methods for
all the transport regimes is also absent. We thus aim to per-
form a comprehensive evaluation of the applicability of the linear-
scaling Kubo–Greenwood quantum transport simulation method
for all three transport regimes: the ballistic, diffusive, and localized
regimes.
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To achieve the above, we find that an efficient implementation
is very desirable. Despite the linear-scaling nature of these numer-
ical methods, they are still computationally demanding in most
cases. Nowadays, the use of graphics processing units (GPUs) has
played a more and more important role in computational physics;
finding the solutions to many problems in computational physics
has become impressively accelerated by using a single or multi-
ple GPUs [29]. In this work, we consider the implementation of the
Kubo–Greenwood quantum transport simulation on the GPU, with
a unified treatment of the various involved theoretical formalisms
and numerical techniques. We will evaluate the performance and
correctness of our implementation, as well as the applicability of
the method itself.

This paper is organized as follows. In Section 2, we present
the theoretical background of the Kubo–Greenwood formula and
the Green–Kubo and Einstein relations which are both derived. In
Section 3, we give a detailed discussion of the involved numerical
techniques and their GPU implementations. After making a
performance evaluation in Section 4, we thoroughly evaluate the
computational method in different transport regimes in Section 5.
Section 6 concludes.

2. Theoretical formalism

The Kubo–Greenwood formula [3] for DC conductivity σ KG
µν (E)

as a function of the energy E at zero temperature is

σ KG
µν (E) =

2π h̄e2

Ω
Tr


Vµδ(E − H)Vνδ(E − H)


(1)

where h̄ is the reduced Planck constant, e is the electron charge, Ω
is the systemvolume,Vµ is the velocity operator in theµ-direction,
H is the Hamiltonian of the system, and Tr denotes the trace. The
factor of 2 results from spin degeneracy. For simplicity, we only
consider transport along one direction. Then, the above formula
can be simplified to be

σ KG(E) =
2π h̄e2

Ω
Tr [Vδ(E − H)Vδ(E − H)] . (2)

By Fourier transforming one of the δ functions in the above
formula,

δ(E − H) =
1

2π h̄


+∞

−∞

dtei(E−H)t/h̄, (3)

we have

σ(E) =
e2

Ω


+∞

−∞

dtTr

eiEt/h̄Ve−iHt/h̄Vδ(E − H)


, (4)

or equivalently,

σ(E) =
e2

Ω


+∞

−∞

dtTr

eiHt/h̄Ve−iHt/h̄Vδ(E − H)


(5)

due to the remaining δ function. Through a change of variables,
t → −t , we get the following Green–Kubo formula [30,2], which
expresses the running electrical conductivity (REC) as a time-
integration of the velocity auto-correlation (VAC) Cvv(E, t):

σ GK(E, t) = e2ρ(E)

 t

0
Cvv(E, t)dt, (6)

Cvv(E, t) =
Tr

 2
Ω

δ(E − H) (V (t)V + VV (t)) /2


Tr
 2

Ω
δ(E − H)

 , (7)

ρ(E) = Tr

2
Ω

δ(E − H)


, (8)

where V (t) = UĎ(t)VU(t) = eiHt/h̄Ve−iHt/h̄ is the velocity opera-
tor in the Heisenberg representation, and ρ(E) the density of states
(DOS). The Green–Kubo relation constitutes essentially the formal-
ism used by Yuan et al. [25,27].

For a specific Green–Kubo formula, there is generally a cor-
responding Einstein formula. By integrating the Green–Kubo for-
mula, we obtain the following Einstein formula, which expresses
the REC as a time-derivative of the mean square displacement
(MSD) 1X2(E, t):

σ E1(E, t) = e2ρ(E)
d

2dt
1X2(E, t), (9)

1X2(E, t) =
Tr

 2
Ω

δ(E − H) (X(t)− X)2


Tr
 2

Ω
δ(E − H)

 , (10)

where X(t) = UĎ(t)XU(t) is the position operator in the Heisen-
berg representation. An alternative definition, in which the deriva-
tive in the above equation is replaced by a division,

σ E2(E, t) = e2ρ(E)
1X2(E, t)

2t
, (11)

is frequently used, since it gives smoother curves for the REC than
σ E1(E, t) does. The above Einstein relation is exactly the real-space
Kubo method [9–12].

We will demonstrate the equivalence of the Green–Kubo
formalism and the Einstein formalism numerically. Specifically,
we will show that σ E1(E, t) and σ GK(E, t) are equivalent, while
σ E2(E, t) deviates from the other two to some degree.

By going from the Kubo–Greenwood formalism to the Green–
Kubo or the Einstein formalism, the conductivity becomes a
function of not only the energy E, but also the correlation time t .
Usually, one takes the following large time limit:

σ KG(E) = lim
t→∞

σ GK(E, t) = lim
t→∞

σ E1(E, t). (12)

However, the convergence of this limit is only ensured for diffusive
transport, in which case the VAC decays to zero and the MSD
becomes proportional to t , resulting in a converged REC. For
ballistic transport, the VAC oscillates around a fixed value and
the MSD increases quadratically with increasing t , resulting in a
divergent REC. In the localized regime, the VAC develops negative
values and the slope of the MSD decreases, resulting in a decaying
REC.

In this paper, we take graphene as our test system.We useNx to
represent the number of dimer lines located along the zigzag edge
and Ny to represent the number of zigzag-shaped chains across
the armchair edge. Thus, an Nx × Ny graphene sample has N =
NxNy carbon atoms, and the lengths in the zigzag and armchair
directions are Lx =

√
3Nxa/2 and Ly = 3Nya/2, respectively,

where a = 0.142 nm is the carbon–carbon bond length used.
For 2D graphene, periodic boundary conditions are applied in
both directions; for quasi-1D armchair graphene nanoribbon
(AGNR) and zigzag graphene nanoribbon (ZGNR), we use periodic
boundary conditions along the transport (longitudinal) direction
and non-periodic boundary conditions along the perpendicular
direction.

We use a nearest-neighbor pz orbit tight-binding Hamiltonian
for pristine systems:

H =

⟨mn⟩

Hmn|m⟩⟨n| = −

⟨mn⟩

γ0|m⟩⟨n|, (13)

where the hopping parameter γ0 is chosen to be 2.7 eV. With this
notation, the position and velocity operators can be expressed as

X =

m

Xm|m⟩⟨m|, (14)
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