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1. Introduction

In most theoretical investigations on arterial pulse wave transmission through a thin elastic walled tubes, blood thickening
due to rise in red blood cells has been assumed to be insignificant [1]. Many researchers have discussed and presented new
models about flow in fluid-filled thin elastic tubes. Adesanya and co-workers have presented an investigation about the
equations governing the fluid flow. They have used some assumptions and variable transformations to reduce the fluid flow
equation to a new style of an evolution equation [2].

Uur +aq UUE — azug;-g + a3u5E§ + a4u§$§§ =0. (1)

Eq. (1) reduces to another type of evolution equations. When a,, a3, a; — 0Eq. (1) becomes the inviscid Burger’s equation,
as, aq — 0 it becomes the viscous Burger’s equation, ag — 0 it is the KdV-Burger’s equation and a3 = 0, a, = —1 it becomes
the Kuramoto-Sivashinsky (KS) equation.

Lie group symmetry method is one of the most powerful methods among the above mentioned methods, to determine
exact solutions of NLPDEs in [3-15]. Furthermore, certain nonlinear PDEs admit infinitely many conservation laws. Although
most lack a physical interpretation, these conservation laws play an important role and have many remarkable uses, specially
in completely integrability. Some interesting papers in this field can be found in [16-24]. For more details see [48-57].
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Fig. 1. 2D figure of the solution of Eq. (1) with aid the reduced Eq. (7).

2. Symmetries of Eq. (1)

In here, we give a discussion through the symmetries of the problem.
Firstly, we give Lie group of infinitesimal transformations:

T = T+ €LV (T, & u) + O(€2), & =& + €l%(1, €, u) + 0(€2), u* = u+ €g(t, &, u) + 0(€2), (2)

where € is the group parameter. The associated Lie algebra of infinitesimal symmetries is the set of the vector field of the
form

9
0

If Pr®)X denotes the fourth prolongation of X then the invariance condition is

X= ;l(T! S?u)% +§-2(T7 gvu) +¢(T, S7u)%' (3)

PrX(A) a0 =0, (4)

where A := ur 4 ajullg — dpUge + A3Ugee + Aqlgege, and yields an over-determined system of linear PDEs in {1, ¢2 and ¢, the
so-called determining equations, which solving these equations in different cases, we get:

Case 1: ajaq # 0,a3 =0,a, = —1.

This case is related to the KS equation and we have

=G, P =a11G + G, ¢ =Gy, (5)

where Cq, C, and C3 are arbitrary constants. Thus the Lie symmetry algebra admitted by Eq. (1) is spanned by the following
three infinitesimal generators (Fig. 1)
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We present below a reduction and related solution with some different generators:
Reduction 1.1. Similarity variables related to X; + vX, are u(t, &) = ®(0), where 6 = £ — vt and satisfies the following

equation:

(a1 D(0) — v)D'(0) + D"(6) + as PP(6) = 0. (7)

X1 = (6)

Eq. (7) has the following soliton solutions
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Case 2: ajayazayg + 0.
This case is more general one and we can get
(=G, P =a11C 4+ G, ¢ =Gy, (8)

where Cq, C; and C3 are arbitrary constants. Thus the Lie symmetry algebra admitted by Eq. (1) is spanned by the following
three infinitesimal generators

i,X2=£,X3=al‘L'£ a
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We present a reduction and related solutions with some different generators:

X; = (9)
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