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We conduct a comprehensive analysis of the split-operator method for propagating phase space
distribution functions in different scenarios of classical mechanics. A numerical method based on Fast
Fourier Transform allows to propagate almost any sampled or exact localized initial state, as well as
the direct calculation of current densities in phase space. In order to demonstrate the potential of the
proposed numerical scheme some simulations involving chaotic, dissipative and relativistic dynamics

are performed. In the conducted simulations, dynamical functions like autocorrelations as well as the
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detailed structures in phase space are discussed. We find that the split-operator technique demonstrates
the effectiveness for studying time evolution of interacting one-dimensional classical systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The split-operator technique (SOT) has been considered one
of the most plausible alternatives to perform the time-evolution
of localized initial states in quantum systems. It has been suc-
cessfully applied for the solution of the Schrédinger equation in
coordinates as well as phase space representations [1-4]. It has
become an ideal for propagating initial states in many branches
of physics, for instance, applications involving wave-packet dy-
namics in molecular systems [5-7] and frequent use of quan-
tum molecular dynamics [8,9]. In the recent past, Finite difference
has adopted the SOT scheme to simulate propagation phenomena
in quantum mechanics and quantum field theory [10,11]. More-
over, the versatility of this hybrid model becomes an advantage of
using both modeling schemes; Noticeably, to simulate the scatter-
ing of sound in the time-dependent domain [12], and the propa-
gation of waves through optical fibers [13]. Recently, the SOT has
exploited the power of high performance computing and it has
been implemented in modern hardware architectures for solving
time-dependent Schrédinger equations and time-dependent Dirac
equations [14] as well as the Klein-Gordon equation [15]. In con-
trast to quantum mechanics, little is known about the benefits of

* Corresponding author. Tel.: +57 3004863763.
E-mail addresses: eagomez@uniquindio.edu.co (E.A. Gémez),
sthirumu@uabmc.edu (S.P. Thirumuruganandham).

0010-4655/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.08.025

this approach in the context of classical mechanics, in fact, there is
only one work in the literature where this issue has been addressed
in detail. More precisely, the pioneering work of Dattoli et al. [16]
has developed a numerical method based on SOT for propagat-
ing the Liouville equation, and it was successfully applied for the
case of a one-dimensional Hamiltonian system. Nevertheless, the
numerical approach has not been widely noticed in many signif-
icant situations of classical dynamics. Possibly, it is due to their
work having a limitation of implementation, the initial state should
be known in an exact form as an inevitable step to perform the
propagation in phase space. Furthermore, the traditional propaga-
tion methods in classical mechanics continue being the favorites
to propagate initial states, since they involve mainly three stages,
namely: (i) the initial state is frequently sampled on phase space
accordingly with a particular distribution function, (ii) the corre-
sponding classical trajectories are propagated at final time using a
numerical integrator for solving the classical equations of motion;
thus, those propagated trajectories contribute to the final state.
(iii) In general, the propagated state should be smoothed in a grid,
since all classical trajectories contribute in a different way to each
phase space point. This methodology is commonly used in classical
molecular dynamics [17,18], semiclassical propagation of wave-
packets and Wigner functions [19-21], as well as studies about
quantum-—classical correspondence where a comparison with
classical calculations is necessary [22,23]. However, it is worth
mentioning that some complications can arise in the traditional
propagation methods, for instance, the sampling method cannot
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always cover completely the initial state, and the convergence of
methods as well as the propagated state will be a compromise.
The numerical integration generally is time consuming when non-
linearities appear in the classical equations of motion, and the
propagated state requires a lot of classical trajectories in order to
obtain a good resolution in phase space.

The present paper is concerned with classical phase space prop-
agation based on the split-operator technique, and one of the mo-
tivations of this work is to fill the knowledge gap on this isolated
topic. In order to achieve this, we will adopt the SOT to different
scenarios of classical (relativistic) mechanics involving; regular,
chaotic motion, and dissipative dynamics, and subsequently, prop-
agation in high-dimensional phase spaces. We propose a numerical
method for propagating phase space distribution functions with
several advantages in contrast to the traditional methods. More
precisely, (i) our approach is directly based on computations on a
grid of size N x N representing the whole phase space of classical
systems, thus the resolution in phase space is defined at the begin-
ning of the calculation, and it can be managed with the actual com-
putational resources. (ii) The initial state should be storage on grid,
but it can be computed in exact form or sampled as is done by the
traditional methods, and finally (iii) the numerical propagation is
accomplished by the fast Fourier transform where the computation
method takes the order of @ (N log N) operations that will reduce
significantly the computational cost of the numerical simulations.

This paper is organized as follows: Section 2 explains the
theoretical background of propagation phase space distribution
functions according to the Liouville equation, and the numerical
solution based on fast Fourier transform. In Section 3 we describe
the method for propagating Hamiltonian systems with §-kick in-
teraction. In Sections 4 and 5 is considered for the time evolution of
phase space distribution functions for dissipative dynamics asso-
ciated with the classical limit of non-Hermitian quantum systems,
and relativistic systems, respectively. The Section 6 deal with the
phase space propagation for an interacting one-dimensional clas-
sical systems. Finally, we conclude in Section 7.

2. Liouville equation and the numerical schema

The time-evolution of phase space distribution function for a
one-dimensional system is governed by the Liouville equation

dp(q,p; t)
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where p(q, p; t) is the phase space distribution function and Lis
the Liouville operator. The latter is given by
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where H is the classical Hamiltonian function. The solution to
Eq. (1) can formally be written as p(q, p; t) = U(t)p(qo, po; 0),
where p(qo, po; 0) is the phase space distribution function at initial
time, and the evolution operator is given by 0] ) = exp{ti}. In
order to incorporate the split-operator technique, we split the full
time evolution into 6t = t/N time steps, then the propagation in
phase space can be written as:

n=0,1,.
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where p,(q, p) indicates the phase space distribution function at
the n-th time step, and the short-time evolution operator reads
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together with
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Let us define the application of exponential operators exp(%ﬂ)

and exp(§ tiz) on the phase space distribution function. It reads in
terms of Fourier transform

irpqdt
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where V'(q) = dV(q)/dq is the first order energy derivative, and
Fap (}‘qf;) denotes the Fourier (inverse Fourier) transform in po-
sition or momentum coordinates, respectively. Thus, this yields a
short-time evolution operator given by
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Note that here, we have considered the classical Hamiltonian func-
tion written in a standard form ie H = p?/2m + V(q). However,
it is not completely necessary as we will show in Section 5 for the
relativistic case, where the kinetic term is much more complicated
than this.

2.1. Algorithm for propagating phase space distribution functions

A simple algorithm that we proposed for propagating the
phase space distribution functions compressed the following steps.
(i) The first step consists of accumulating the localized initial state
on an extended numerical grid, which will determine the avail-
ability of phase space. (ii) To divide the full time propagation in §t
short-time steps and apply the short-time evolution operator ac-
cording to Eq. (7). Noting that the Fourier transform implied here
consists of both position and momentum coordinates, respectively.
Accordingly this will be multiplied by corresponding phases. (iv) In
order to achieve the full time propagation, to repeat the previ-
ous step on the propagated phase space distribution function and
continue with this procedure until reaching the final time. It is
noteworthy to mention that this numerical method allows to prop-
agate virtually any localized initial state, for instance for propagat-
ing random initial states.

3. Propagation of §-kicked systems

In the literature, impulsively driven systems are often referred
to 8-kicked systems, due to the fact that the duration of each im-
pulse is infinitely small compared to the period of the unperturbed
system. These systems have become an essential tool for study-
ing many phenomena from both theoretical and experimental
perspectives, for instance, one of the primary approaches is quan-
tum chaos in cold atoms [24,25], which ensures that it can provide
valuable insights into non-linear-Hamiltonian dynamics, as well as
the classical-quantum correspondence [26,27]. Although §-kicked
systems have been widely studied in the framework of quantum
mechanics, there is no study about numerical methods in classical
mechanics to propagate localized initial states, and this is the first
time that SOT has been applied for §-kicked systems. For a more
detailed analysis of the way that the system changes upon each
impulse, we present a numerical implementation for propagating
an initial state perturbed by §-kick interaction. Let us consider a
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