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a b s t r a c t

In this work, we investigate the suitability of several meshing strategies for use with a common peri-
dynamics solution scheme. First, we use a manufactured solution to quantify the influence of different
meshes on the accuracy and conditioning of a nonlocal boundary value problem in one and two dimen-
sions.We explore convergence behavior, the effects ofmodel parameters, and sensitivity to perturbations.
We then apply the same meshing strategies to a three-dimensional impact simulation that employs the
full peridynamic mechanical theory. We present a qualitative comparison of the fracture patterns that
result, and suggest best practices for generatingmeshes that lead to efficient, high-quality numerical sim-
ulations of peridynamic models.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Peridynamics [1–3] is a generalization of the classical theory of
continuum mechanics to include nonlocal force interactions. The
spatial extent of these interactions provides an intrinsic length,
resulting in models that exhibit a scale-dependent response to
applied stimuli. Balance laws and constitutive relations are for-
mulated using integrals (rather than spatial derivatives which are
only defined on smooth fields), so the formation and evolution of
discontinuities, such as cracks, boundaries, and interfaces, can be
controlled by a single constitutive relation. These features en-
able models that reproduce many complex materials phenomena,
including fracture, failure modes in composites, and phase transi-
tions. In the same spirit of the mechanical theory, an entire nonlo-
cal calculus is under development [4,5] for general scalar, vector,
and tensor quantities.

Due to the finite nature of computing machines, peridynamic
simulations are prone to subtle computational difficulties. An ap-
preciable source of such difficulties is the computational mesh,
which represents the model geometry, and in many solution
schemes, is invoked as part of a quadrature rule that resolves in-
teractions near each material point. At present, guidance on gen-
erating meshes that are appropriate for peridynamic problems is
tenuous, and best practices are not established for irregular
meshes, which are desirable for their versatility and efficiency in
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representing complex geometries. These details present sources
for computation error and motivate the present study, where we
systematically explore the relationship between model parame-
ters and the underlying spatial discretization in an attempt to im-
prove the fidelity of nonlocal simulations.

Several techniques, such as direct quadrature methods [6–9]
and finite element methods [7,10,11], have been proposed for
approximating solutions to this class of nonlocal models. The ef-
ficiency and accuracy of these approaches relies intimately on a
discrete representation of the model geometry that tracks or cap-
tures the deformation of continuum bodies, including the location
of any discontinuous features that may develop during the sim-
ulation. When present, discontinuities are constrained to follow
contours of the mesh. As a result, the local resolution limits our
knowledge of the position of discontinuities, and presents a restric-
tion on the family of configurations that can be realized for that
system. As a complement to mesh refinement procedures, which
have been discussed by others [12,13], this work examines how
irregular point placement strategies affect the accuracy of these
computations and alleviates some obvious mesh dependent be-
haviors that have been observed. Previous studies have focused on
other numerical issues in the peridynamic setting, including the
performance of finite elementmeshes in the presence of stationary
jump discontinuities [11], crack propagation and branching be-
havior [14], and symmetry breaking in dynamic fracture [15].

We first study mesh sensitivity in the simplified setting of a
nonlocal boundary value problem (Section 2), where a manufac-
tured solution enables a quantitative evaluation of discretization
errors and conditioning. There, we identify primary error sources
and examine the robustness of quadrature schemes to small

0010-4655/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.09.010

http://dx.doi.org/10.1016/j.cpc.2013.09.010
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2013.09.010&domain=pdf
mailto:sfh07e@my.fsu.edu
mailto:shenke@fsu.edu
mailto:sshanbhag@fsu.edu
http://dx.doi.org/10.1016/j.cpc.2013.09.010


182 S.F. Henke, S. Shanbhag / Computer Physics Communications 185 (2014) 181–193

disturbances in the placement of grid points. In addition to the
widely-used tensor product grids,wedemonstrate that the genera-
tors of a centroidal Voronoi tessellation (CVT) bear desirable prop-
erties for integrating peridynamic interactions. Lessons from the
scalar problem are then applied (Section 3) towards understanding
meshing issues in a three-dimensional impact simulation that uti-
lizes the full peridynamic mechanical theory. Qualitative aspects
of the resulting fracture patterns are discussed and explanation
of the observed behavior is attempted. We conclude (Section 4)
with a summary of our findings and some suggestions for future
investigations.

2. Nonlocal boundary value problem

As an initial attempt at understanding mesh sensitivity in peri-
dynamic systems, we study meshing issues in a simpler, related
context: the nonlocal ‘‘elliptic’’ boundary value problem. Using a
manufactured solution and direct quadrature method, we explore
the response of the discrete system to different quadrature point
positioning strategies in one and two dimensions.

2.1. Nonlocal elliptic boundary value problem

A nonlocal elliptic boundary value problem [4,5,16] is governed
by the balance equation,

b (x) =


Ω

γ

x, x′

 
u (x) − u


x′


dVx′ , ∀

x, x′


∈ Ω, (1)

where b (x) contains the known problem data, γ

x, x′


is a two-

point modulus function that is symmetric in its arguments (i.e.,
γ

x, x′


= γ


x′, x


), u (x) is the unknown scalar quantity, and

Vx′ is the volume ascribed to the material point x′. This equation
is termed ‘‘elliptic’’, because it corresponds [16] with the spatial
differential operator of the classical wave and diffusion equations,
and nonlocal because the behavior at any point x within the
domain depends on the behavior of points x′ at a finite distance.
Unlike its local counterpart, a constraint domain for nonlocal
problems must have a measurable volume for well-posedness.
Nonlocal versions of classical boundary conditions are obtained by
specifying a function value (Dirichlet) or integral flux (Neumann)
over a subset of the computational domain.

The strength of the interaction modulus typically decays with
distance, so it is customary to truncate nonlocal interactions out-
side a finite region Hx ⊂ Ω surrounding each material point x.
That is,

γ

x, x′


= 0 ∀ x′

∉ Hx. (2)

This choice reduces the number of interactions that must be
processed in simulating models, and supports a banded matrix
structure in the discrete case. In this work, we assume that such
a neighborhood exists, and is a ball,

Hx =

x′

∈ Ω :
x − x′

 ≤ δ

, (3)

parameterized by its radius δ, termed theperidynamic horizon. The
local limit of δ provides correspondence with classical theories [5],
and facilitates determining parameters in the modulus function.
Changes to the horizon modify the relationship between these pa-
rameters (through a process called scaling [12,13]), and generally
alters the dispersive properties of a medium [17]. Consequently,
the cut-off radius is viewed as a constitutive parameter rather than
a computational convenience. For more on physical and computa-
tional aspects involving the horizon see Refs. [6,11,17–19].

On the interior of the nonlocal region, wemake the constitutive
assumption that the modulus function is given by,

γ

x, x′


=
x′

− x
−P

∀ x′
∈ Hx, (4)

where thenonlocal exponent P controls the strengthprofile of non-
local interactions and affects the amount of smoothing [4] the in-
tegral operator imparts on the problem data. The form of Eq. (4)
subsumes modulus functions found in a variety of settings, includ-
ing micromechanics [1,2] (P = 1), mass and heat transport [20,21]
(P = 2), and the fractional Laplacian [16,22] (P = d + 2s, where
d is the spatial dimension and the parameter 0 < s < 1). In prob-
lems where the domain is stationary, changing the value of P is
equivalent to convolution of the integral operator with a spherical
influence function [2,23].

2.2. Problem setup

For the computational experiments, we select a smooth manu-
factured solution that also appears in Ref. [11], and generalize it for
multiple dimensions,

û (x) = R2
− ∥x∥2 , ∀ x ∈ Ω ∪ Γ , (5)

where Ω is the solution domain and Γ the constraint domain. Di-
rect substitution can be used to determine the forcing term that
corresponds to this manufactured solution,

b̂ (x) =


2δ3−P/ (3 − P) d = 1, P < 3
2πδ4−P/ (4 − P) d = 2, P < 4,

(6)

which depends on the number of spatial dimensions d, nonlocal
horizon δ, and nonlocal exponent P .

To facilitate a comparisonwith the impact problem that appears
later in this paper, the solution domain Ω is chosen to be the ball-
shaped region,

Ω := {x : ∥x∥ ≤ r} , (7)

that is enclosed by a constraint domain Γ , shaped like a spherical
shell,

Γ := {x : r < ∥x∥ ≤ R} . (8)

These domains are parameterized by an inner radius r and outer
radius R, such that r + δ ≤ R. Throughout the volume of the con-
straint region, we augment the governing equation with nonlocal
Dirichlet data by enforcing the values,

u (x) = û (x) , ∀ x ∈ Γ . (9)

This setup effectively removes all boundaries and their associated
difficulties (see [10,13,15]) from this research.

2.3. Solution method

Approximation of the governing equation (1) by a composite
quadrature rule yields the discretization,

b (xi) ≈


j≠i

γ

xi, xj

 
u (xi) − u


xj


Vj, (10)

where all points positioned inside the computational domain are
assigned an equal fraction of the region’s analytical volume. This
can be written as a linear system of equations,
A

xi, xj

 
u

xj


= [b (xi)] , (11)

where the entries of the system matrix are given by,


A

xi, xj


=



j≠i

γ

xi, xj


Vj i = j

−γ

xi, xj


Vj i ≠ j.

(12)
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