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a  b  s  t  r  a  c  t

The  general  joint  diagonalization  problem  involves  estimating  the  separating  matrix  only
given mixing  signals  interrelated  matrix  set. For  nonorthogonal  joint  diagonalization  based
on  the  weighted  least-squares  criterion,  the algorithms  may  converge  to trivial  (zero)  solu-
tion. Certainly,  the trivial  solution  can  simply  be  avoided  by  adopting  some  constraint  on
the diagonalizing  matrix  or  penalty  terms.  However,  free  of zero  solution  is  not  enough,
especially  for  the  blind  signal  separation  (BSS).  Actually,  ill-conditioned  diagonalizer  even
though  nonzero  makes  the  objective  function  unstable  or  even  divergence  in the  process
optimization.  Therefore,  it is necessary  to  prevent  the  iterative  solutions  from  degener-
ating  ill-conditioned  forms.  To  solve  this  problem,  a novel  nonleast-squares  criterion  for
non-orthogonal  joint  diagonalization  is proposed.  It is imposed  constrainted  terms  on  diag-
onalizers,  which  are  induced  form  the  mathematic  define  of  the  ill condition  matrix.  Finally,
Computer  simulations  indicate  that  the  new algorithm  yields  diagonalizers  which  not  only
minimize the  diagonalization  error  but  also  have  as  small  condition  numbers  as possible,
meanwhile,  degenerate  solutions  are  avoided  strictly.

©  2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Aiming to recover the sources from the observations without priori knowledge on the mixing procedure and the sources,
blind source separation (BSS) is a powerful signal processing method. In recent years, many scholars have made deep research
on this problem, and have made many achievements. In reference [1], Xu proposed a multi-stage algorithm (MSA) which
is different with the classic second-order blind identification method using Givens rotations to derive the unitary matrix,
the MSA  seeks one column of the unitary through solving a symmetrical tri-quadric cost function. In ref. [2], Li proposed
proposes some improved legible cost functions based on linear prediction for BSS. Their optimization is simpler and can
be converted into a generalized eigendecomposition of a corresponding matrix pencil, etc. Owing to its broad application
potential, BSS has been extensively employed in fields such as biomedicine, image processing, and speech signal processing
[3–5], etc.

The issue of approximate joint diagonalization (JD) of a set of target matrices has been researched extensively in the past
few decades and has used to implement its wide-ranging applications in a variety of signal processing fields, such as blind
source separation (BSS) [6], blind identification [7], and blind wave beamforming [8].
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Joint diagonalization algorithms play a crucial role in the success of this type of separation methods. By far, a variety
of algorithms have been proposed for the joint diagonalization problem. Several algorithms based on joint diagonalization
(JD) have been proposed to solve the BSS problem [9–16]. They are generally divided into two  categories: the Orthogonal
Joint Diagonalization (OJD) problem [9–11] and the Non-Orthogonal Joint Diagonalization (NOJD) problem depending on
whether requiring that the solution matrix is an orthogonal matrix or not [12–16]. A number of state-of-the-art algorithms
were proposed to solve this problem. OJD algorithms restrict the diagonalizer to be orthogonal, and are applicable in BSS
when the observations are prewhitened. However, because of some disadvantages in prewhitening phase in BSS, NJD has
received increasing attention in recent years. Among the existing JD algorithms, most are based on the following criterion
of minimizing diagonalization error:

F(A) =
∑

i

∑
m /=  n

((AM iA
T )mn)

2
. (1)

where matrix A ∈ R
N×M (in this paper, we discuss the problem in real number domain) is called a diagonalizer conveniently

and Mi = Rx (�i)(i = 1, 2, . . .,  N) is the correlation matrix of observed signal vector x(t) with time lag �i. It is clear that the solution
under this model sometimes tends to degenerate zero or near zero because of the mathematical properties. Of  course,
these solutions can be excluded to the optimization process by adding constraint terms in the criterion. Many articles have
discussed this issue. But there is a problem rarely discussed: how to avoid the the diagonalizer tends to the ill conditioned
form. When this problem occurs, it will undermine the stability of the algorithm that lead the algorithm not to convergence,
although it is implied, does not necessarily occur. Zhou proposed a NJD algorithm by imposing variety of constraints on
diagonalizers, which yields small condition number diagonalizers [15]. But the algorithm has two shortcomings: (1) the
imposed constrained terms indirectly limit the upper bound of diagonalizers, but they do not clear their own ranges. That
may  lead the conditioned numbers of diagonalizers to converge large values even ill-conditioned solutions. (2) In order to
solve NJD problem, they transform it into a constrained optimization problem. Compared to the unconstrained optimization
problem, the constraint form is more difficult to solve. Moreover, the adopted off-diag cost function is the special case of
the general form, it is proven that the solution under the off model rarely converge to the separable matrix even though its
cost function converges to zero [14]. In this paper, a new method is proposed to solve these problems. The expression of the
constrain term imposed on the cost function is derived from the mathematical definition of the ill conditioned matrix. Under
the action of the constraint term, the condition number of the diagonalizer is limited to the range of the specified value.
In other words, the condition number can be adaptively controlled, that will accelerate the convergence rate of iterative
algorithm. Finally, the NJD problem is transformed into a unconstrained optimization which is easier programming.

The rest of the paper is organized as follows. The issue of the condition number of a diagonalizer is raised in Section 2.
Section 3 shows the experimental results and related discussions. Conclusions are drawn in Section 4. Notation: boldfaced
capital and lowercase letters denote matrices and the column vectors, respectively. (·)H is the Hermitian transpose, (·)T is
the transpose, (·)* is the complex conjugate. ‖·‖ represents the Frobenius norm and E(·) denotes the expectation operator.

2. Proposed approach

In the BSS context, denote the observed signals x(t) = {xi(t), i = 1, 2, . . .,  M}T by matrix equation x(t) = Ws(t) + n(t), where
W = (wij)M×N is the mixing matrix, W = (wij)M×N(M ≥ N) is the source signal vector, and n(t) is the additive noise vector.
Under some assumptions for solving the BSS problem following: (1) The unknown mixing matrix W is of full-column rank.
(2) The source signals are zero-mean, statistically mutually independent stationary signals. (3) The additive noise, which
could be colored in the space domain and white in the time domain, is independent from the source signals.

The covariance matrices of the array output form the following structure [9]:

Rx(0) = E{x(t)xT (t)} = WD0WT + Rn (2)

Rx(�i) = E{x(t)xT (t + �i)} = WDiW
T , �i /= 0 (3)

where Rs(�i) = E{s(t)sT (t + �i)} = Diag[�i
1(�i), �i

2(�i), . . .,  �i
N(�i), ] = Di. BSS aims to identify the mixture matrix so that the

source signals can be recovered. Eqs. (2) and (3) imply that when �i /= 0, the noise effect can be eliminated during mixture
matrix identification. When Mi = Rx (�i), i = 1, 2, . . .,  N, the following equation is obtained:

M i = WDiW
T (4)

Premultiplying Mi in Eq.(4) by W’s inverse matrix A and postmultiplying by AT yields:

AM iA
T = Di (5)

Based on the analysis, we construct a cost function thus:

F(A, {Di}) =
N∑
i

‖Di − AM iA
T ‖2

. (6)
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