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a  b  s  t  r  a  c  t

The  expectation  maximization  (EM)  algorithm  is  the  most  enduring  way  to estimate  the
parameters  of  Gaussian  mixture  models.  However,  use  the  EM algorithm  needs  to know
in advance  the  true  number  of  mixing  components.  Therefore,  unless  this  key  information
is  available,  it is  usually  not  straightforward  to  perform  this  algorithm.  On  the  other  hand,
its performance  highly  depends  on  the  initial  parameters.  To  alleviate  these  problems,  a
new  model  selection  criterion,  i.e.,  the  desirability  level  criterion,  is  proposed  to  choose
the number  of components.  In  particular,  we  proposed  a  variable  step  until  find  either
coincides  with  the  actual  number  or slightly  exceeds  it,  which  maximize  the  value  of the
desirability  level  criterion  that  provides  an  efficient  index  to quantify  the  distance  between
the Gaussian  mixture  model  fits  the  observation  data. Furthermore,  unwanted  components
can be  suppressed  by setting  the threshold  of  the desirability  level  criterion.  Numerical
examples  are  provided  to  illustrate  the  effectiveness  of  our desirability  level  criterion.

©  2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Gaussian mixture model (GMM)  is a flexible, powerful probabilistic, and well-weathered models of applied include
astronomy, biology, genetics, medicine, psychiatry, economics, engineering et al. (see, e.g., [1,4–6,25,29]). In practical appli-
cations, the standard tool for estimating the parameters of GMM  is the expectation-maximization (EM) algorithm [2], which
can converge in finite iterations. Redner and Walker [3] explained this algorithm, along with helpful remarks about its per-
formance in learning mixtures of univariate Gaussians. Since then, the EM algorithm has received a great amount of attention
due to its increasing used in the problem of learning GMM.

However, the EM algorithm for Gaussian mixture fitting has some limitations and drawbacks. It is a local greedy method,
and its performance highly depends on the initialization. In addition, the true number of Gaussian components is assumed
to known, whereas in several cases this key information is not available. Thus, an actual number of Gaussian must be
made along with the parameter estimation, which becomes a crucial issue in Gaussian mixture modelling. Generally, an
appropriate number of Gaussian can be chosen via some information and statistical selection criteria. Based on information
theory, several model selection methods have been proposed to estimate the number of components of a mixture. Such as
Akaike’s information criterion (AIC) [7] and its extensions [8], Rissanen’s minimum description length (MDL) criterion [9],
Schwarz’s Bayesian inference criterion (BIC) [10], Mclachlan’s Laplace-empirical criterion (LEC) [1], the minimum message
length (MML)  criterion [11], Bozdogan’s informational complexity (ICOMP) criterion [12] and its applications (see, e.g.
[13,14]), Banfield’s approximate weight of evidence (AWE) criterion [15], and Celeux’s normalized entropy criterion (NEC)
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[16]. Unfortunately, these algorithms require repeating parameter estimation for different components, and thus it produced
a huge computational cost of time and space. What’s worst, the correct rate is usually low. Thus, several stochastic simulations
were presented to infer the mixture model, such as the Markov chain Monte Carlo methods [17] and Dirichlet processes [18],
the Variational Bayesians principle [19], and cross-validation approaches [20] have also been used to calculate the number
of mixture components. [21,22] presented a greedy learning method to decide the Gaussian mixture components. Though
these stochastic criteria are more efficient than the information criteria, their structure are still complex. On the other hand,
EM algorithm is a local greedy method, thus its performance highly depends on the initialization. To overcome this problem,
a method called random starting was proposed in Ref. [1]. Ueda et al. [23] presented a split and merge operations and Ma
and He [24] introduced a Bayesian Ying-Yang (BYY) harmony learning method to escape from local maxima of the log-
likelihood. In addition, clustering [15], unsupervised learning method [27], and deterministic annealing [28] has been used
to initialization. Recently, binary tree search method [29], stochastic search method [31], energy-based competitive learning
(EBCL) [30], the new initialization strategy [32] and random swap EM algorithm [33] have been proposed to solve the model
selection and initialization problems. However, the model selection and initialization problem have not been completely
solved yet.

In this paper, we try to propose a new model selection criterion for GMM  in terms of the features of the given data. That
is, the desirability level criterion is proposed to descript the closeness between the new GMM  and the histogram of the data.
In particular, unwanted components can be suppressed by setting the threshold of the desirability level criterion. Finally, in
order to check the new model selection criterion, we construct a variable step greedy EM algorithm.

This paper is organised as follows. The EM algorithm and its previous work on model selection and initialization are
reviewed in Section 2. In Section 3, the desirability level criterion is presented to decide the number of the components in
the GMM.  Numerical examples are provided in Section 4. Section 5 concludes the paper.

2. Summary of the EM algorithm and its model selection criterion

2.1. EM algorithm

As presented in [1], a GMM  is a probability density function (PDF) consisting of a weighted sum of Gaussian densities,
which is defined as

f (e|�) =
M∑
k=1

ωkN(e|�k) (1)

where the weights satisfy the following conditions
∑M

k=1ωk = 1, ∀ωk ≥ 0.
And the component densities in a d-dimensional is

N(e|�k) = N(e|�k, ˙k) = (2�)−d/2 det (˙k)
1/2 exp((−1/2) × (e − �k)

T˙−1
k

(e − �k))

where the mean �k ∈ Rd, and the covariance matrix ˙k are collectively denoted by the parameter vector �k = { �k; ˙k}.
Thus, the GMM  is specified by the set of parameters � = {ω1, · · ·,  ωM; �1, �2, · · ·, �M}.

As we well-known, a variety of learning algorithms were presented for estimating the parameters of mixture model
with a sample data set, and the most popular one is the expectation-maximization (EM) algorithm, which converges to a
maximum likelihood estimate of the mixture parameters. Assume e = {ei}ni=1 is the training set. Then, the parameters � are
estimated via the following iterative update equations for each component k, k = 1, 2, · · ·,  M:
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