Accepted Manuscript

Title: Fabrication and properties of ZnO nanorods based MSM UV detectors on silicon substrates

Author: Shaivalini Singh Si-Hyun Park

PII: S0030-4026(17)30244-9

DOI: http://dx.doi.org/doi:10.1016/j.ijleo.2017.02.095

Reference: IJLEO 58911

To appear in:

Received date: 7-12-2016 Accepted date: 25-2-2017

Please cite this article as: <doi>http://dx.doi.org/10.1016/j.ijleo.2017.02.095</doi>

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Fabrication and Properties of ZnO Nanorods based MSM UV Detectors on Silicon Substrates

Shaivalini Singh¹, and Si-Hyun Park^{1,*}

¹Department of Electronic Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do South Korea * Corresponding author: "Si-Hyun Park" sihyun_park@ynu.ac.kr

Abstract: This work reports the ultraviolet (UV) detection characteristics of zinc-oxide (ZnO) nanorods (NR's) based metal-semiconductor-metal (MSM) devices. ZnO NR's were grown on silicon (Si) substrates (*p*-type) by low-temperature hydrothermal method in two steps. In the first step, approximately 50 nm thick pure ZnO seed-layer was grown on Si, then in the second step, main growth of ZnO NR's were done above seed-layer. The structural morphology of ZnO NR's were investigated by atomic force microscope (AFM) and by cross-sectional scanning electron microscopy (X-SEM) respectively. The results showed that high density NR's were grown uniformly above the ZnO seed layer and the tip of NR's were found in the shape of a hexagonal. After the growth of ZnO NR's, interdigited palladium (Pd) electrodes were deposited by using shadow-mask technique. The electrical characterization of the Pd/ZnO-NR's/Pd based detectors was studied under UV light. The values of contrast-ratio and responsivity were calculated from *I-V* characteristics of MSM UV detectors. These results may be helpful for the simplistic fabrication of hydrothermally grown ZnO NR's based UV detectors.

Key words: Zinc Oxide; Hydrothermal; Palladium; UV detector; Interdigited; *p*-type Si.

1. Introduction

The one-dimensional (1D) nanostructures have been comprehensively studied over the last few decades due to their use in the area of optoelectronics and spintronic devices [1-3]. Among the reported 1D system, the nanomaterials of ZnO is most popular due to their versatile use in various nanoscale devices [1, 2]. ZnO has a direct wide band gap of 3.3 eV, it has a very large exciton binding energy ~ 60 meV and it has high chemical and mechanical stability [4-7]. ZnO nanostructures can be grown in the form of several types of morphologies, like nanoflowers [8], nanorods (NR's) [9], nanoflakes [10], nanowires [2] and nanospheres [11] etc. These ZnO nanostructures are drawing great attention in the area of optoelectronic devices, such as surface acoustic-wave devices [12], chemical sensor [13], light emitting transparent conductors [14], gas sensor [12], solar cells [15], laser diodes [16], and transparent semiconductor electrodes etc [17]. Especially ZnO NR's based ultraviolet (UV) light detectors are attracting attention of many groups because they possess large surface-to-volume ratio and high quantum efficiency in comparison to the bulk ZnO [18-21]. In the recent past, many groups have reported ZnO NR based UV detectors with different structures. C. O. Chey et al reported Au/Fe-doped ZnO NR Schottky diode based UV photodetector [18]. W. S. Wang et al. reported ZnO nanostructure-based SAW oscillator UV detector [19]. L. Luo et al. reported heterojunction configuration for n-ZnO nanowires/p-silicon based UV detectors [20]. R. Azimirad et al. reported Fe doped ZnO/ZnO shell/core NR's based UV detector [21]. Many groups have preferred metal-semiconductor-metal (MSM) structures in comparison to other structures for ZnO NR's UV PDs. The MSM structure offer a simple, easy and controllable fabrication process [22-24]. In the recent past many groups have reported ZnO NR's UV detectors with MSM structure. Y. H. Ko et al. have reported ZnO NR's UV detectors with MSM structure [22]. They have used hydrothermal method for the growth of ZnO NR's and they have obtained very high on-off ratio ~ 37.4 for ZnO NR's based MSM UV detectors. S. J. Young et al. have reported Ga doped ZnO NR's based MSM UV detectors with constant ratio ~15.2 [23]. Vasudevan et al. have reported ZnO NR's based MSM UV detectors for different electrode dimensions and ZnO rod lengths [24]. All these groups have mainly used Au or Au/Cr or Au/Ti metal for interdigited electrodes of MSM devices. In this work, we have used

Download English Version:

https://daneshyari.com/en/article/5026016

Download Persian Version:

https://daneshyari.com/article/5026016

<u>Daneshyari.com</u>