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1. Introduction

The streak camera has been successfully developed as an instrument for the recording of ultrafast transient phenomenon
with ultrahigh temporal and spatial resolution in the picoseconds or sub-picoseconds regime, with the performance of streak
camera was affected by the aberrations of the image tube, the core components of streak camera. According to Zhou [1],
the aberrations calculation of image tube were due to the second and even higher order derivatives of electrostatic which
cannot be calculated directly, since there is not analytical solution.

Finite difference scheme is the usual simulation method used to solve the Laplace Equation through the Taylor expansion
in two or three dimension, and finally figure out the voltage distribution of image tube by iteration. Once the physical values
of voltage distributions were calculated, one need also computed the derivatives (at least from first to fourth for third-level
aberration calculations) accurately. The common used second order central scheme was insufficient, means that we need
higher order precision schemes.

According to the Taylor expansion, the higher accuracy for finite difference scheme, the more nodes needed. In contract,
compact finite difference scheme can achieve the same order or even higher order precision with less nodes compare
to normal finite difference schemes. The most influential compact scheme is the Lele’s schemes [2], which proved to have
spectral-like resolution for short waves by Fourier analysis. Then Mahesh [3] developed a family of compact schemes coupling
the second derivatives also proved to be good resolution. Based on Zhang [4] developed a new class of central compact
schemes using both the values of cell centers and grid nodes, improved both the accuracy order and the wave resolution
excellently. However, the Lele’s schemes involve at least five nodes (when c=0) or seven nodes (when c # 0), means
need at least two more near boundary schemes; Shu Hai Zhang’s schemes use the extrapolation method to derive the
boundary schemes, which was complicated for keeping high order globally; Mahesh deduced the boundary schemes by

* Corresponding author.
E-mail address: qlyang@szu.edu.cn (Q.-1. Yang).

http://dx.doi.org/10.1016/].ijle0.2017.02.039
0030-4026/© 2017 Elsevier GmbH. All rights reserved.


dx.doi.org/10.1016/j.ijleo.2017.02.039
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2017.02.039&domain=pdf
mailto:qlyang@szu.edu.cn
dx.doi.org/10.1016/j.ijleo.2017.02.039

422 J.-j. Zhang, Q.-1. Yang / Optik 136 (2017) 421-427

Taylor expansion, but only four order precision for the second boundary derivatives matching with the sixth or eighth order
interior schemes.

In this paper, an eighth order combined compact finite scheme based on Mahesh’s schemes and using the methodology of
Zhang [4] was presented. Through systematic Fourier analysis, it was proved to be spectral like resolutions, and the numerical
test shows that it was an ideal scheme for the calculation of high order derivatives of electrostatic field in image tube.

This paper is organized as follows. Section 2 presents the method to design our scheme. Section 3 contains a systematic
Fourier analysis to analyze the wave resolution of our schemes. Section 4 designs the boundary closures schemes. Section
5 presents the numerical test of our schemes. In Section 6, we apply our schemes to compute the high order derivatives of
practical electrostatic image tube. The concluding remarks are made in Section 7.

2. Combined compact schemes

In this section, a compact finite scheme was derived from the combined finite difference schemes proposed by Mahesh
[3], then was extended to be an eighth order scheme with spectral like resolution by using both the methodology of Shu Hai
Zhang [4] and the cell interpolation schemes of Lele [2].

a (N+2 +a2fN+1)+a3f(N+1 +a4fN+2)+af(N+1 +a6]clN+2

= bif™) + baf ™ +baf™ 4+ baf™ 4+ bsfV(N=0,2,4..) (1)
i- = 2 + = 2
Where fl.(N),fl.(N“), fi(NJrz) represent the (N), (N+1)th, (N+2)th derivative at node x; respectively. One can use Eq. (1) to
compute the higher order derivatives (N+1)th and (N +2)t" once the N th derivative was computed.

The scheme given by (1) contains the values on the cell centers, which are unknown and could be obtained using the cell
compact interpolation scheme [2].

The coefficients in Eq. (1) were derived by matching the Taylor series coefficient of various orders. Schemes of order
ranging from second to eighth could be obtained by solving the resulting set of Taylor expansion equations. In this paper,
we represent only the highest order (eighth) schemes for demonstration.

The coefficient of eighth order scheme of the (N + 1) th derivative:
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The coefficient of eighth order scheme of the (N +2) th derivative:
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The subscripts aj;, ay;, byj, by; of (2a) and (2b) were used to distinguish the coefficients of (N+ 1)t and (N +2)th derivative,
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with the truncation error — for (N+1) ™ and (N +2) th derivatives respectively.

3. Fourier analysis and error transfer description

Fourier analysis and the ‘modified wavenumber’ provided a convenient method for quantifying the error. Since ComCS
contains the first and second derivatives, the modified wavenumber may figure out to be:
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Once the first and the second derivative were obtained, one could replace the values on the right hand-side stencil to
obtain the higher order derivatives, i.e. w(3) = w(1)*w(2) w(4) = w(2)*w(2), w(5) = W *w(4) wi®) =w@*w4) .
Fig. 1 shows the modified wavenumber ranged from first to fourth derivative of ComCS and the exact solution.



Download English Version:

https://daneshyari.com/en/article/5026100

Download Persian Version:

https://daneshyari.com/article/5026100

Daneshyari.com


https://daneshyari.com/en/article/5026100
https://daneshyari.com/article/5026100
https://daneshyari.com

