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a  b  s  t  r  a  c  t

We  introduce  an  equivalent  circuit  model  for dual-wavelength  quantum  cascade  lasers
(QCLs)  using  the four-level  rate-equations.  We  examine  the validity  of  the  proposed  circuit
model by  comparing  the  simulated  results  with  the  theoretical  results  available  in  the
literatures.  By  using  the  proposed  equivalent  circuit-level  model,  the  effects  of  injection
current  on  dual-wavelength  QCL static  and  dynamic  behaviors  are  investigated.  We show
that the  proposed  circuit-level  model  can  accurately  predict  the operating  characteristics
of  the  dual-wavelength  QCLs.

©  2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The quantum cascade lasers (QCL) are optical sources with small sizes, large intensity modulation bandwidth, narrow
linewidth and high operating temperatures [1–4]. They are attractive for different applications, such as chemical sensors
[5], pollution monitoring, environmental sensing [6], free space optical communication systems, coherent applications,
infrared spectroscopy [7], and so on. Recently, the multi-wavelength QCLs has attracted much attention mainly due to
potential applications in areas such as trace-gases sensing [8], ranging (LIDAR) [8,9], generation of terahertz radiation using
of nonlinear mixing of two wavelengths [10]. The numerical approaches used to analyze the multi-level rate-equations
of QCLs are accurate, but very computationally intensive. Thus, these models aren’t suitable for system-level designs and
optimizations. Instead, it is possible to form an equivalent circuit-level model and reduce drastically the complexity of the
analysis. Actually, the most important advantage of the laser circuit-level modeling is that it allows a complete simulation
of lasers embedded in electronic circuits. In this paper, we  propose an equivalent circuit-level model for dual-wavelength
QCLs based on a transformed four-level rate-equations. The proposed model, for any arbitrary initial conditions, can be
used for both steady-state and dynamic responses. The proposed model is verified using analytical results from hamadou
et al. [11] for the steady state and transition time responses. The simulation results show an excellent agreement in all
the comparisons. Furthermore, using the proposed circuit model the modulation responses of the both modes in different
operatiing regions are investigated. The paper is organized as follows: In Section 2, the standard four-level rate-equations-
based model of the dual-wavelength QCLs is presented. In Section 3, the derivation of the equivalent circuit-level model based
on the transformed four-level rate-equations is demonstrated. Verification of presented dual-wavelength QCL circuit-level
model is presented in Section 4.
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Fig. 1. Schematic structure of energy levels in a dual-wavelength QCL.

2. The four-level rate-equations-based model of the QCLs

The four-level model system of the bound to continuum stage in a dual-wavelength QCL is shown schematically in Fig. 1.
The dynamics of carrier and photon numbers in a four-level QCL, neglecting optical nonlinearities, can be described in terms
of the following six first-order differential equations [11]

dN4

dt
= I

e
− N4

�4
− � (1) c′�(1)

V
(N4 − N3)S(1) − � (2) c′�(2)

V
(N4 − N3)S(2), (1)

dN3

dt
= N4

�43
− N3

�3
+ � (1) c′�(1)

V
(N4 − N3)S(1), (2)

dN2

dt
= N4

�43
− N3

�32
− N2

�21
+ � (2) c′�(2)

V
(N4 − N3)S(2), (3)

dN1

dt
= N4

�41
+ N3

�31
+ N2

�21
− N1

�out
, (4)

dS(1)

dt
= NP� (1) c′�(1)

V
(N4 − N3)S(1) − S(1)

�(1)
p

+ Npˇ(1) N4

�(1)
sp

and (5)

dS(2)

dt
= NP� (1) c′�(2)

V
(N4 − N3)S(2) − S(2)

�(2)
p

+ Npˇ(2) N4

�(2)
sp

, (6)

where N1, N2, N3 and N4 are the instantaneous numbers of electrons in each of the four levels, respectively, S(1) and S(2)

denote the photon numbers for modes 1 of wavelength �1 and 2 of wavelength �2, respectively. V denotes the whole volume
of the active region, e is the magnitude of electronic charge, and I is the injection current. Furthermore, � (i) is the mode
confinement factor for wavelengths �i (i = 1, 2), c ’ = c/neff is the average velocity of light in the system, in which neff and c are
the effective refractive index of the cavity and the speed of light in vacuum, respectively. In addition, ˇ(i) define the respective
proportions of spontaneous emission when a photon is emitted into the corresponding cavity mode and �(i) represent the
stimulated emission cross section for the transition corresponding to wavelengths �i and are given by
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where ez(i) are the dipole matrix elements of the transition i, ε0 is the vacuum permittivity and 2� (i) represent the full-width
at half maximum (FWHM) of the respective electroluminescence spectrum for transition i. In the above equations, �43, �42,
�41, �32, �31 and �21 are non-radiative scattering times due to LO-phonon emission, �out represents the electron escape time
between two adjacent stages and �(i)

sp are radiative spontaneous relaxation times for both involved transitions and are given
by
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where �  is the reduced Plank constant. Furthermore, �3 and �4 are introduced as 1/�4 = 1/�43 + 1/�42 + 1/�42 and

1/�3 = 1/�32 + 1/�31, respectively. �(i)
p are the photon lifetimes that can be expressed as �(i)
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m are the losses of waveguide cavity and mirrors, respectively. The mirrors loss can be given by ˛(i)
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where R(i)
1 and R(i)

2 are the reflectivity of the facets 1 and 2, respectively, and L is the lateral length of the cavity.
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