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Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic
potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving
only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we
introduce and study a novel tensor approach for fast and accurate assembled summation of a large number
of lattice-allocated potentials represented on 3D N x N x N grid with the computational requirements
only weakly dependent on the number of summed potentials. It is based on the assembled low-rank
canonical tensor representations of the collected potentials using pointwise sums of shifted canonical
vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic
potentials over L x L x L lattice embedded in a box the required storage scales linearly in the 1D grid-
size, O(N), while the numerical cost is estimated by O(NL). For periodic boundary conditions, the storage
demand remains proportional to the 1D grid-size of a unit cell, n = N /L, while the numerical cost reduces
to O(N), that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N).
The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using
data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification,
we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The
presented approach is beneficial in applications which require further functional calculus with the lattice
potential, say, scalar product with a function, integration or differentiation, which can be performed easily
in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the
tensor summation method and confirm the estimated bounds on the tensor ranks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Tracing back to Ewald summation techniques [12], the develop-
ment of lattice-sum methods in numerical simulation of particle
interactions in large molecular systems has led to established al-

There are several challenges in the numerical treatment of pe-
riodic and perturbed periodic systems in quantum chemical com-
putations for crystalline, metallic and polymer-type compounds,
see [1-8]. One of them is the lattice summation of electrostatic po-
tentials of a large number of nuclei distributed on a fine 3D com-
putational grid. This problem is also considered to be a demanding
computational task in the numerical treatment of long-range elec-
trostatic interactions in molecular dynamics simulations of large
solvated biological systems [9-11]. In the latter applications the
efficient calculation of quantities like potential energy function or
interparticle forces remains to be of main interest.
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gorithms for evaluating long-range electrostatic potentials of mul-
tiparticle systems, see for example [13,14,9-11,15] and references
therein. These methods usually combine the original Ewald sum-
mation approach with the Fast Fourier Transform (FFT) or fast mul-
tipole methods [16].

The Ewald summation techniques were shown to be particu-
larly attractive for computation of the potential energies and forces
of many-particle systems with long-range interaction potential in
periodic boundary conditions. They are based on the spacial sep-
aration of a sum of potentials into two parts, the short-range part
treated in the real space, and the long-range part whose sum con-
verges in the reciprocal space. The fast multipole method is used
for more unstructuredly distributed potentials, where the interac-
tions between closely positioned potentials are calculated directly,
and the distant interactions are calculated by using the hierarchical
clusters.
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Here we propose the new approach for calculation of lattice
sums based on the assembled low-rank tensor-product approxi-
mation of the electrostatic potentials (shifted Newton kernels) dis-
cretized on large N x N x N 3D Cartesian grid. A sum of potentials
is represented on the 3D uniform grid in the whole computational
box, as a low-rank tensor with storage O(N), containing tensor-
products of vectors of a special form. This remarkable approach
is initiated by our former numerical observations in [17,18] that
the Tucker tensor rank of the 3D lattice sum of discretized Slater
functions remains uniformly bounded, nearly independent of the
number of single Slater functions in a sum.

As a building block we use the separable tensor-product repre-
sentation (approximation) of a single Newton kernel % in a given
computational box, which provides the electrostatic potential at
any point of an N x N x N-grid, but needs only O(N) storage
due to the canonical tensor format (A.1). This algorithm, intro-
duced in [19], includes presentation of the potential in a form of
a weighted sum of Gaussians obtained by the sinc-quadrature ap-
proximation to the integral Laplace transform of the kernel func-
tion % [20,21]. Then by shifting and summation of the single
canonical tensors one can construct a sum of electrostatic poten-
tials located at the positions of nuclei in a molecule. This scheme
of direct tensor summation was introduced in [22,23] for the calcu-
lation of the one-electron integrals in the black-box Hartree-Fock
solver by grid-based tensor numerical methods.! It is well suited
for the case of arbitrary positions of potentials, like for example
nuclei in a molecule, however the rank of the resulting canonical
tensor is approximately proportional to a number of summed po-
tentials.

In this paper we introduce a novel grid-based assembled tensor
summation method which matches well for lattice-type and
periodic molecular systems and yields enormous reduction in
storage and time of calculations. The resulting canonical tensor
representing the total sum of a large number of potentials contains
the same number of canonical vectors as a tensor for a single
potential. However, these vectors have another content: they
collect the whole data from the 3D lattice by capturing the periodic
shape of the total 3D potential sum (represented on the grid) onto
a few 1D canonican vectors, as it is shown in Figs. 3.2 and 3.5
in sections Sections 3.1 and 3.2. This agglomeration is performed
in a simple algebraic way by pointwise sums of shifted canonical
vectors representing the generating function, e.g. % The presented
numerical calculations confirm that the difference between the
total potentials obtained by an assembled tensor-product sum and
by a direct canonical sum is close to machine precision, see Fig. 3.4.

Thus, the adaptive global decomposition of a sum of interacting
potentials can be computed with a high accuracy, and in a com-
pletely algebraic way. The resultant potential is represented simul-
taneously on the fine 3D Cartesian grid in the whole computational
box, both in the framework of a finite lattice-type cluster, or of
a supercell in a periodic setting. The corresponding rank bounds
for the tensor representation of the sums of potentials are proven.
Our grid-based tensor approach is beneficial in applications requir-
ing further functional calculus with the lattice potential sums, for
example, interpolation, scalar product with a function, integration
or differentiation (computation of energies or forces), which can
be performed on large 3D grids using tensor arithmetics of sub-
linear cost [ 18,24] (see Appendix). This advantage makes the tensor
method promising in electronic structure calculations, for exam-
ple, in computation of projections of the sum of electrostatic poten-
tials onto some basis sets like molecular or atomic Gaussian-type
orbitals.

1 The accuracy of tensor-based calculations is close to accuracy of benchmark
Hartree-Fock packages based on analytical evaluation of the corresponding
integrals [22,23].

In the case of an L x L x L lattice cluster in a box the storage
size is shown to be bounded by O(L), while the summation cost is
estimated by O(NL). The latter can be reduced to the logarithmic
scaling in the grid size, O(L log N), by using the quantized approxi-
mation of long canonical vectors (QTT approximation method [25],
see Appendix). For a lattice cluster in a box both the fast multipole,
FFT as well as the so-called P>M methods if applicable scale at least
linear-logarithmic in the number of particles/nuclear charges on a
lattice, O(L® log L), see [14,11].

For periodic boundary conditions, the respective lattice sum-
mations are reduced to 1D operations on short canonical vectors
of size n = N/L, being the restriction (projection) of the global
N-vectors onto the unit cell. Here n denotes merely the number
of grid points per unit cell. In this case, storage and computational
costs are reduced to O(n) and O(Ln), respectively, while the tradi-
tional FFT-based approach scales at least cubically in L, O(L* log L).
Due to low cost of the tensor method in the limit of large lattice
size L, the conditionally convergent sums in periodic setting can be
regularized by subtraction of the constant term which can be eval-
uated numerically by the Richardson extrapolation on a sequence
of lattice parameters L, 2L, 4L etc. (see Section 3.2). Hence, in the
new framework the analytic treatment of the conditionally con-
vergent sums is no longer required.

It is worth to note that the presented tensor method is appli-
cable to the lattice sums of rather general interaction potentials
which allow an efficient local-plus-separable approximation. In
particular, along with Coulombic systems, it can be applied to a
wide class of commonly used interaction potentials, for example,
to the Slater, Yukawa, Stokeslet, Lennard-Jones or van der Waals in-
teractions. In all these cases the existence of low-rank grid-based
tensor approximation can be proved and this approximation can be
constructed numerically by analytic-algebraic methods as in the
case of the Newton kernel. Our tensor approach can be extended
to slightly perturbed periodic systems, for example, to the case of
few vacancies in the spacial distribution of electrostatic potentials,
or a small perturbation in positions of electron charges and other
defects. The more detailed discussion of these issues is beyond the
scope of the present paper, and is the topic of forthcoming papers.

Notice that the tensor numerical methods are now recognized
as a powerful tool for solution of multidimensional partial dif-
ferential equations (PDEs) discretized by traditional grid-based
schemes. Originating from the DMRG-based matrix product states
decomposition in quantum physics and chemistry [26] and cou-
pled with tensor multilinear algebra [27-29], the approach was
recently developed to the new branch of numerical analysis, ten-
sor numerical methods, providing efficient algorithms for solving
multidimensional PDEs with linear complexity scaling in the di-
mension [30]. One of the first steps in the development of tensor
numerical methods was the 3D grid-based tensor-structured
method for solution of the nonlinear Hartree-Fock equation
[31,32,18,23] based on the efficient algorithms for the grid-based
calculation of the 3D convolution integral operators in 1D com-
plexity.

The remainder of the paper is structured as follows. In Section 2
we recall the low-rank approximation to the single Newton
kernel (electrostatic potential) in the canonical tensor format and
direct tensor calculation of the total potential sum of arbitrarily
positioned potentials in a box. Section 3 presents the main results
of this paper describing the assembled low-rank tensor summation
of potentials on a lattice in a bounded rectangular box, as well as in
the periodic setting. The storage estimates and complexity analysis
are provided. We give numerical illustrations to the structure of
assembled canonical vectors and the results on accuracy and times
of tensor summations over large 3D lattice. In Section 4, we prove
the low QTT-rank approximation of the canonical vectors in the
lattice sum of the Newton kernels that justifies the logarithmic



Download English Version:

https://daneshyari.com/en/article/502612

Download Persian Version:

https://daneshyari.com/article/502612

Daneshyari.com


https://daneshyari.com/en/article/502612
https://daneshyari.com/article/502612
https://daneshyari.com

