Accepted Manuscript

Title: Quaternionic One-dimensional Fractional Fourier

Transform

Author: R. ROOPKUMAR

PII: S0030-4026(16)31088-9

DOI: http://dx.doi.org/doi:10.1016/j.ijleo.2016.09.069

Reference: IJLEO 58212

To appear in:

Received date: 15-7-2016 Accepted date: 19-9-2016

Please cite this article as: R. ROOPKUMAR, Quaternionic One-dimensional Fractional Fourier Transform, <![CDATA[Optik - International Journal for Light and Electron Optics]]> (2016), http://dx.doi.org/10.1016/j.ijleo.2016.09.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Quaternionic One-dimensional Fractional Fourier Transform

R. ROOPKUMAR

Department of Mathematics, Central University of Kerala, Kasaragod-671316, India.

Abstract

In this paper, we introduce quaternionic fractional Fourier transform of integrable (and square integrable) functions on \mathbb{R} and prove that it is satisfying all the expected properties like linearity, inversion formula, Parseval's formula, convolution theorem and product theorem.

Keywords: Fractional Fourier transform, Convolution, Quaternion valued functions

2010 MSC: 44A15, 44A35, 46S10

1. Introduction

The fractional Fourier transform was introduced in [20] and the explicit definition of the kernel $K_{\alpha}(t,u)$ of this transform is given from [5] as follows. For $\alpha \in \mathbb{R}$, let

$$K_{\alpha}(t,u) = \begin{cases} \sqrt{\frac{1-i\cot\alpha}{2\pi}} e^{i\frac{t^2+u^2}{2}\cot\alpha - iut\csc\alpha}, & \alpha \notin \pi\mathbb{Z} \\ \delta(t-u), & \alpha \in 2\pi\mathbb{Z} \\ \delta(t+u), & \alpha + \pi \in 2\pi\mathbb{Z}. \end{cases}$$

Subsequently, many research works have been done on fractional Fourier transform. See $[7,\,8,\,14,\,15,\,16,\,20,\,25,\,30].$

In view of signal processing,

 $Email\ address:\ {\tt roopkumarr@rediffmail.com}\ (R.\ ROOPKUMAR)$

Preprint submitted to Optik

July 15, 2016

Download English Version:

https://daneshyari.com/en/article/5026170

Download Persian Version:

https://daneshyari.com/article/5026170

Daneshyari.com