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Statistical methods for the extraction of a small shift in broad data distributions are examined by means
of Monte Carlo simulations. This work was originally motivated by the CERN neutrino beam to Gran
Sasso (CNGS) experiment for which the OPERA detector collaboration reported a time shift in a broad
distribution with an accuracy of +7.8 ns, while the fluctuation of the average time turns with +23.8 ns
out to be much larger. Although the physical result of a big shift has been withdrawn, statistical methods
that make an identification in a broad distribution with such a small error possible remain of interest.
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1. Introduction

In highly publicized CERN announcements [1] it was claimed
that neutrinos from the CNGS arrived at Gran Sasso

5t = [—57.8 +7.8 (stat) oo (sys.)} ns Q)

too early, violating the 6t = O limit set by the speed of light.
Meanwhile, initially overlooked systematic errors [2] have wiped
out the estimate of a large shift. But the estimate of the statistical
error remains of interest as it exemplifies the extraction of a small
shift from a broad distribution. The purpose of this article is to shed
light on subtleties of an analysis, which leads to the statistical part
of the estimate (1).

The CNGS sample of 15223 neutrinos was produced in
extractions that last about 10 500 ns each. Two different types of
extractions were used leading to probability densities (PD)

pe(t), k=1,2 (2)

for neutrinos departure times, which are reproduced here in Fig. 1.
The PD used in our paper have been discretized in intervals of 1 ns
and can be downloaded from the author’s website [3].

One can now perform a statistical bootstrap [4] analysis by
Monte Carlo (MC) generation of departure times with the PD of
Fig. 1. This is already remarked in [1], where the application re-
mains limited to testing of their maximum likelihood procedure
on a sample of 100 MC data sets. As the MC generation of depar-
ture times can be repeated almost arbitrarily often with distinct
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random numbers, one can analyze and verify statistical methods
that one wants to apply to discover a shift in the data.

For the uniform PD over 10500 ns, it has been noted [5] that
with n = 16 111 events the variance of the departure time average
t is approximately At = 24 ns, i.e., much larger than the statistical
error bar in Eq. (1). It will be discussed in this paper that the
time shift §t (1) defined in [1] behaves indeed differently than a
statistical fluctuation of the time average

_ ny 8ty +ny 8t o~

Sf= 1T 7272 Sti=ti—t, i=1,2. (3)
ny +ny

Here f; are the measured departure time averages, t; are the mean

departure times obtained from the underlying PD, and n; are the

numbers of events in each extraction. The distinction between &t

(1) and 8t (3) is made by an overline on t or not. Obviously,
(8t) = (5t) (4)

holds for the expectation values, but their error bars behave
differently.

To set the groundwork, it is shown in Section 2 for the uniform
distribution that a shift §¢ = —57.8 ns can be identified with cer-
tainty (probability to miss it <1073¢) when there are 15 223 events
and the departure time range is 10 500 ns. In Section 3 the MC gen-
eration of departure times is described. Section 4 gives examples
of descriptive histograms from MC data. Suggested by the uniform
distribution, the front tails of the distributions are of particular in-
terest. For their study the cumulative distribution function (CDF) is
better suited than a histogram, because it allows easily to focus on
outliers. This is investigated in Section 5. To estimate the shift value
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Fig. 1. Departure time probability densities modeled after Fig. 11 of Ref. [1].

§t, the maximum likelihood method is used in [1]. In Section 6 fea-
tures of this method are calculated by applying it to a large number
of MC generated departure time samples.

Independently of the special example, the approaches discussed
in Sections 2-6 are of interest, because they address the general
problem of extracting a precise estimate of a shift from a broad
distribution. Summary and conclusions follow in Section 7.

2. Uniform distribution

Using the uniform PD over a time window of 10500 ns, the
standard deviation of the average

R L
tZEZt] (5)

is for n = 15223 events much larger than the statistical error bar
quoted in Eq. (1), namely approximately

Af = 25ns. (6)

How can this be? That the average (5) fluctuates with the variance
(6) is unavoidable. However, the effect we are after is a systematic
shift of each departure time by an amount §t = —57.8 ns. Again
for the uniform distribution, drawn in Fig. 2, it is easily illustrated
that this can very well be identified. Events indicated on the left of
the figure are impossible unless there is a shift. Now, with a shift
of —57.8 ns the probability to find a particular event to the left of
the uniform PD is given by

p =57.8/10500 = 0.005505 . . . (7)
and the probability to find none is

(1 _p)15672 — 10736.5. (8)

The distance of the smallest time from the left edge of the uniform
PD is a lower bound on §t and a direct estimate for the time shift
(1)is

8t = Miere 10500 ns/15 223, 9)

where ns is the number of events observed on the left outside
of the uniform PD. Confidence limits can be established from the
binomial distribution.

For the tiny range of 57.8 ns indicated by the somewhat thicker
line on the right side of the uniform PD in Fig. 2, the situation is
the other way round. It has to be empty when there is a shift by
8t = —57.8 ns. The probability that this happens by chance when
there is in fact no shift is also given by (9). When §t is not known
the distance of the largest measured time from the right edge of
the uniform PD is an upper bound on §t.

We do not pursue the uniform PD any further, because we are
interested in the more complicated case of the less sharp PD of
Fig. 1.
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Fig. 2. Uniform distribution: Impossible (left) and missing events (in the enlarged
thickness of the right border).

3. MC generation of departure times

As mentioned in the introduction, the PD of Fig. 1 have been
discretized in 1 ns intervals and are available on the Web [3]. The
resolution of 1 ns allows for easy MC generation of departure times
and is sufficient for the intended accuracy of the estimate of a shift.
In the following our thus defined models are labeled by k = 1, 2.
The probabilities as function of time t are defined by

pe(t) = p() forit <t <i" +1, (10)

where i* are integers in ns units. As it is convenient for the
MC generation of departure times, the normalization for the
discretized PD is (distinct from Fig. 1) chosen so that

max

Dy =mgx{pk(i)]=1 (11)
holds. Proper normalizations ) ; px(i) Aty = 1 could still be ac-
hieved by choosing instead of ns some unconventional unit for Aty.
For the generation of correctly distributed random times this is ir-
relevant. For a short time range model 1 probabilities p;(t) are en-
larged in Fig. 3.

After discretization the smallest i""
non-zero py(i') values are

™" =359 and ™™ = 15368,
i =12 and 5™ =19877.

and largest i}’ times with

In particular for the large i* values, these ranges include a number
of zero probabilities. MC generated departure times tf< G =
1, ..., n) with n the number of data are obtained from uniformly
distributed random numbers ¢ in a range enclosing (if"", if™ + 1),
here chosen to be (1, 22 000): for model k a proposed random time
t is accepted with probability p,(i*) for it < t < i* + 1. If t
is rejected, the procedure is repeated until a value gets accepted,
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