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The dispersion of solute in porous media shows a non-linear increase in the transition from diffusion to
advection dominated dispersion as the flow velocity is raised. In the past, the behavior in this intermediate
regime has been explained with a variety of models. We present and use a simplified numerical model
which does not contain any turbulence, Taylor dispersion, or fractality. With it, we show that the non-
linearity in the intermediate regime nevertheless occurs. Furthermore, we show that the intermediate
regime can be regarded as a phase transition between random, diffusive transport at low flow velocity
and ordered transport controlled by the geometry of the pore space at high flow velocities. This phase
transition explains the first-order behavior in the intermediate regime. A new quantifier, the ratio of the
amount of solute in dominantly advective versus dominantly diffusive pore channels, plays the role of
‘order parameter’ of this phase transition. Taylor dispersion, often invoked to explain the supra-linear
behavior of longitudinal dispersion in this regime, was found not to be of primary importance. The novel
treatment of the intermediate regime paves the way for a more accurate description of dispersion as a
function of flow velocity, spanning the whole range of Péclet numbers relevant to practical applications,

such as ground water remediation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transport of dissolved solutes in pore fluids in homogeneous
porous media results from the synergy between advection and dif-
fusion [1,2]. Despite its importance in many applications and fields
of research (e.g., groundwater remediation), this process is not yet
understood in full detail. Flow through a porous medium causes
an increased effective diffusion of the solute, termed dispersion,
due to variations in flow velocity within and between the individ-
ual pore channels and due to the tortuous pathways the fluid fol-
lows through the pores. The corresponding dispersion coefficients
are commonly applied in models based on the advection-diffusion
equation (ADE) to describe spreading of solute in porous media, for
example pollutant plumes in ground water, although one should
be aware that the ADE is only valid under rather restrictive condi-
tions [3]. Although it is generally agreed that dispersion increases
with flow velocity, there is no agreement on the exact relationship
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between the dispersion coefficient and controlling parameters,
such as flow velocity, pore geometry, fluid viscosity, etc. [4].

To study solute transport in homogeneous porous media, a
sample of fluid-filled porous material is subjected to an external
pressure head in a specific direction (taken to be the x-direction).
This results in a fluid flow velocity vg through the medium, usually
expressed in terms of the Péclet number, Pe = vyG/D, where G is a
typical microscopic length scale (grain size), and D a (‘molecular’)
diffusion coefficient (of the solute in the fluid). Then, the dispersion
of an initially concentrated distribution of solute is studied as it is
advected through the medium, while simultaneously experiencing
diffusion.

The observed longitudinal (Dy) and transverse (D) dispersion
as a function of Péclet number (flow velocity) is often described
by a disjunct set of up to five dispersional regimes [5,2,6,7], using
a separate functional relationship (sometimes referred to as ‘cor-
relation’) between Péclet number and dispersion, Dy ,(Pe), in each
regime. Typically, the following regimes are discerned, although
the boundaries between the regimes vary somewhat between au-
thors: (i) The molecular diffusion regime (Pe < 0.1 — 0.3); (ii) the
transition regime (0.1 — 0.3 < Pe < 5); (iii) the major regime (also
known as the power law regime [8]) (5 < Pe < 250—4000); (iv) the
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mechanical dispersion regime (250 — 4000 < Pe); (v) the high Pe
number regime, sometimes called the inertial or turbulent regime.
Here, we are concerned with laminar flow only. We will jointly re-
fer to regimes (ii) and (iii) as the ‘intermediate regime’, i.e., inter-
mediate between the diffusive and mechanical dispersion regimes.

Quite often, the dispersion in each regime is described by a
power law, i.e., Dy, (Pe) oc Pe®¥. Not surprisingly, for regime (i),
ayy = 0, while for regime (iv), oy, = 1. However, in the in-
termediate regime, exponents differing from these limiting values
have been reported to fit experimental data, which has given rise
to speculation about their origin [9,7]. Reported values for «, are
1.2 — 1.3 ([9] and references therein; [7]), while those for o, are
typically around 0.5 — 0.7 [10-12].

Recently, a simplified heuristic model was proposed to replace
this disjunct description of dispersion by a single, unified expres-
sion [13,14]. The model assumes that the advective and diffusive
transport mechanisms compete in the pore channels. Then, as the
mean flow velocity (or pressure head) is increased, transport in
more and more pore channels along the solute flow path through
the medium will be advection-dominated. By making a simple as-
sumption regarding the growth of the ratio between advection and
diffusion dominated channels as the flow is increased, an expres-
sion for the net dispersion was derived. The expression success-
fully describes experimental data for dispersion in homogeneous
porous media over the full range of Péclet numbers in laminar
flow (regimes (i)-(iv)). In particular, it reproduces faster than lin-
ear growth of the longitudinal dispersion with Péclet number in
the intermediate regime, corresponding to an apparent exponent
o > 1.1t was claimed that this behavior could be understood from
the statistical behavior of tracers in the pore channels.

To clarify the origin of this purported statistical behavior, pre-
sumed quite generic for porous media, here we study a highly sim-
plified model for porous media consisting of a network of (pore)
channels [15,16]. In order to obtain a clear vision of the impact of
the statistical behavior mentioned above on dispersion, the model
we chose for this study is as minimalistic as possible, removing any
physical mechanisms, such as turbulence and Taylor dispersion
(see Section 2 below), that might affect these statistical properties.
Thus, along the network connections, transport is one-dimensional
and strictly diffusive and/or advective. The effective longitudinal
and transverse dispersion coefficients are extracted from the fi-
nal numerical solution, after evolving the system in time. It will
be shown that this model does indeed reproduce the dispersion
regimes and produces exponents oy, very similar to those ob-
tained in experiments on actual porous media. In this way, the min-
imum ingredients giving rise to the observed dispersional behavior
are identified. Furthermore, we will extract statistical information
regarding the microscopic transport process that will elucidate the
origin of the observed behavior.

Clearly, the model has only limited validity for the model-
ing of real systems. However, we emphasize that this is not its
purpose. Rather, the model is constructed to discriminate sharply
between qualitatively and quantitatively different physical mecha-
nisms. Discrimination is achieved by the combination of several as-
sumptions, namely: (a) Highly complex three-dimensional porous
materials are modeled by a simple two-dimensional network of in-
finitely thin connections linking nodes. (b) Fluid flow through the
systemisimposed and not influenced by the presence of the solute;
in other words, the solute fraction is assumed to be infinitesimally
small. (c) The fluid flow itself is incompressible, which is a reason-
able assumption even in a realistic porous system when the fluid
chosen is water or similar. (d) The solute is passively transported
by the fluid and is not assumed to be subject to independent trans-
port equations (i.e., the solute has no inertia and it is not reactive).

This simplified model is used to study the effect of network
topology on dispersion. The philosophy of our approach is similar

to that of [9,8]. Here, however, we render the model minimalisti-
cally. The objective is to expose the essential ingredients for de-
scription of solute transport in porous media. An important aspect
of the model is the use of continuum transport equations for the
solute. This effectively corresponds to using of an infinite number
of tracers, which leads to high accuracy results (not easy to obtain
using tracers [17]). Another important aspect is that the numerical
model is specifically designed to handle the wide spread of flow
velocities in individual channels, typical of general porous media.

2. The motivation of the simplified model approach

To motivate the model, we briefly review the main mechanisms
thought to cause dispersion in porous media [5,15,2].

2.1. Mechanical dispersion

Fluid flows through a network of pore channels; we will only
consider laminar flow. Then, fluid flow is determined completely
by the applied pressure head and the boundary conditions, e.g., no-
slip boundary conditions at the channel walls. An important
observation is that the whole problem of obtaining the fluid flow
in the complex geometry and with given boundary conditions is
linear in the applied pressure head: raising the head by a factor
f will lead to an increase of fluid velocity by the same factor f
everywhere.

Tracers are released into this fluid flow in a small region in space
and time, and the tracer cloud is advected passively by the flow. We
assume that the tracers are infinitesimal and massless (no inertia)
so that they do not interact with each other, do not affect the flow,
and follow the flow lines in the absence of diffusion. Further on,
we will also consider the effect of (molecular) diffusion, but first
we discuss pure flow effects. Tracers (and the fluid itself) cannot
leave the network (particle conservation), except at the edge of the
model network.

The tracer cloud, traveling through the network, will spread
out due to the complex distribution of connections between nodes
(leading to a complex flow pattern). Note that this statement
implicitly assumes that the flow through the network is such that
the tracer cloud will actually spread out, i.e., that tracers may
follow alternative paths leading to different net traveled distances
from the point of injection—this excludes, e.g., homogeneous flows
(v = constant over all space) from the analysis.

After some time t, sufficiently large for initial transient effects
to die out, but not so large that tracers are lost from the system, the
size of the tracer cloud can be estimated by its spread

(d2) = ((x— (x))?). (1)
Here, x indicates the set of x-coordinate values of the tracers, and
the angular brackets imply a mean over all tracers. Similar expres-
sions hold for the spread in the other coordinate directions. The
corresponding effective dispersion coefficient can be estimated
from
dZ

in the x direction, and similar for the other coordinate directions,
assuming that the initial size of the tracer cloud is infinitesimally
small. Note that we call this dispersion coefficient effective, as the
tracer distribution may deviate from a Gaussian shape in specific
pore geometries. Deviations from Gaussianity may indicate that
the ADE is an unsatisfactory model for global dispersional behav-
ior [3]. In spite of this, the foregoing effective dispersion coefficient
can always be evaluated in finite-size systems at finite times.

As noted, an increase of the pressure head by a factor f increases
the flow velocity everywhere by that same factor, v = fv. As we
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