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a  b  s  t  r  a  c  t

A new  regime  of  chaotic  flows  is explored  in  which  one  of  the  variables  has  the  freedom  of
offset boosting.  By  a single  introduced  constant,  the DC  offset  of  the  variable  can  be boosted
to any  level,  and  therefore  the variable  can  switch  between  a bipolar  signal  and a unipo-
lar  signal  according  to the  constant.  This  regime  of chaotic  flows  is convenient  for  chaos
applications  since  it can  reduce  the  number  of components  required  for signal  condition-
ing.  Offset  boosting  can  be combined  with  amplitude  control  to achieve  the  full  range  of
linear  transformations  of the  signal.  The  symmetry  of the  variable-boostable  system  may
be destroyed  by  the  new  introduced  boosting  controller;  however,  a different  symmetry  is
obtained  that  preserves  any  existing  multistability.

© 2016  Published  by  Elsevier  GmbH.

1. Introduction

Amplitude control is an important issue in engineering applications for optimizing the amplitude [1–7] and achieving
stability [6–9]. Partial amplitude control changes the amplitude of some of the variables using a partial controller [1], while
a total amplitude controller adjusts the amplitude of all the variables simultaneously [2–6]. Moreover, it is often useful to
transform a bipolar signal to a unipolar signal or vice versa [10–12]. For example, an ADC chip usually needs a non-negative
analog signal as the input signal, which thus demands a unipolar signal. Unipolar signals are easier to transmit in directly-
coupled integrated circuits. Many of the signals from physical sensors are unipolar. However, bipolar signals have lower
levels of DC component, which reduces the power requirements and reduces the attenuation at high voltage and is thus
good for signal transmission.

A natural question is how best to modify a bipolar signal in a differential chaotic system to make it unipolar or vice versa.
A simple capacitor can transform a unipolar signal to a bipolar one since the DC component is blocked by the capacitor.
But the capacitance must be large enough to have negligible reactance compared with the load. Alternately, a single-supply
operational amplifier can offset the voltage and transform a unipolar signal to a bipolar one. Chaotic signals are broadband
with low-frequency components, which complicates the process. A large capacitor or a broadband adder circuit is needed
to achieve the transformation between the unipolar signal and a bipolar one.

In Section 2, we consider examples of chaotic flows that provide offset boosting by a single constant in the governing
equations. In Section 3, we combine offset boosting with amplitude control to achieve a wide range of signals without
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Fig. 1. The inner structure of the variable-boostable chaotic flows.

affecting their dynamical properties such as their power spectra and Lyapunov exponents. In Section 4, we  show that
offset boosting in symmetric systems can preserve the bistability, and the offset-boosted symmetric system can also give
a symmetric pair of coexisting attractors in coordinate-shifted basins of attraction. A short conclusion and discussion are
given in the last section.

2. Variable-boostable chaotic flows

Since the derivative of a constant is zero, a differential equation will not change its form if a constant is added to a variable,
provided that variable does not appear explicitly. For example, replacing the variable x with x + c (here c is a constant) in
the equation ẋ = f (y,  z) has no effect on the dynamics. Consequently, if the other equations of the system have only a single
linear occurrence of the variable x, the introduction of the constant into that equation will produce an offset of the variable
x and thus give the freedom to alter the chaotic signal from unipolar to bipolar or vice versa.

Definition 1.

Suppose there is a differential dynamical system, Ẋ = F (X) (X =
(

x1, x2, x3, . . .xi,. . .
)

(i ∈ N). If xi = ui + c is subject to the

same governing equation except through introducing a single constant into one of the other equations, i.e., Ẏ = F (Y, c)(Y =(
x1, x2, x3, . . .ui,. . .

)
(i ∈ N)), then the system is a variable-boostable system since it has the freedom for offset boosting the

variable xi. Setting xi with xi + c will introduce in the xi variable a new constant c which will change the average value of
the variable xi. Thus the transformation is convenient to offset the bipolar signal xi by a unipolar DC voltage in the circuit, or
vice versa.

For a three-dimensional system, any of the variables (x, y, z) can be boosted by a constant. Consequently, there are three
cases for variable boosting. To limit the complexity of the examples, we consider only quadratic nonlinearities. For such a
dynamic system, if the variable x needs to be boosted by a constant, the equation can be in the form of Eq. (1), where the
extra constant is introduced in the dimension of z.⎧⎪⎨

⎪⎩

ẋ = a1y + a2z + a3y2 + a4z2 + a5yz + a16,

ẏ = a6y + a7z + a8y2 + a9z2 + a10yz + a17,

ż = a11y + a12z + a13y2 + a14z2 + a15yz + a18x.

(1)

Similarly, the variables y and z can be boosted by a new introduced constant in other dimensions. However, all such cases
can be written in the form of Eq. (1) without loss of generality through a simple transformation of variables. This can be
confirmed from the topological structure as shown in Fig. 1. The variable without self-feedback can receive offset boosting
control from the variable in the arm with dual-direction connectivity. For example, in the structure (b), the variable x has
no self-feedback; the variable x influences the dynamics only by the dimension of z leading to a dual-direction connection.
Therefore, the variable x can obtain offset boosting from the dimension of z. All these cases can be transformed from any of
the other cases by the variable substitutions marked in Fig. 1.

Some cases conforming to the above topological structures have been given by Sprott [13,15,16]. For electrical circuit
implementation, a standard jerk equation usually leads to a compact circuit topology. Therefore, for the convenience of
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