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a  b  s  t  r  a  c  t

The  location  difference  of  multiple  distances  based  nearest  neighbors  search  algorithm
(LDMDBA)  has  a good  performance  in efficiency  compared  with  other  kNN  algorithm.  The
major  advantage  of it is its precision  is  litter  lower  than  the full  search  algorithm  (FSA)  algo-
rithm. In  this  paper,  we  proposed  an improved  LDMDBA  algorithm  (ILDMDBA)  by  increasing
the number  of  the reference  points  from  log(d)  to d, where  the d is  the dimensionality  of
data set. By  this  way,  the  prediction  of ILDMDBA  is  improved.  Our  analysis  results  show
that the  time  complexity  of  the  proposed  algorithm  is  not  increased.  The  effectiveness  and
efficiency  of  the  proposed  algorithm  are  demonstrated  in experiments  involving  public  and
artificial  datasets.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

kNN algorithms are used to find k nearest neighbors of data points in a dataset. These algorithms are used in many fields
including feature selection [1], pattern recognition [2,3], clustering [4], classification noise detection [5], and classification
[6–10]. The basic method of finding k nearest neighbors of a point is to compute all Euclidean distances from the query point
to all other data points. This method is known as the full search algorithm (FSA). The FSA has a complexity of O(n2) so that
it is very time consuming. To reduce the computation complexity, two  classes of algorithms [11–27] were proposed.

The first class of algorithms creates a search tree to store data points. In these algorithms, the search strategy is bounded by
branches of the search tree. Fukunaga and Narendra [11] used the hierarchical clustering technique to decompose data points
and represented results using Ball tree, which is highly influenced by clustering algorithms [12]. To decrease the influence of
clustering algorithms, fiveBall tree construction methods were introduced by Omohundro and Friedman [13,14]. A refined
version of k-d tree method was introduced by Sproull [15]. Kim and Park [16] used the ordered partition method to create
a multiple branch tree. Mico et al. [17] used a pre-stored distance table to eliminate more impossible nodes. McNames [18]
proposed a method based on a principal axis search tree (PAT). Wang and Gan [19] combined projected clusters and the PAT
algorithm to reduce the computation time. Chen et al. [20] used winner update search method and a lower-bound tree (LB
tree) to speed up the algorithm. The performance of those algorithms deteriorates with the increase in dimensions, which is
shown in [21] and our experiments. The reason is that higher dimensions lead to higher complexity of tree structures. Thus,
as our experiments show, the performance of various kNN methods using various tree structures reduces significantly. In
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addition, as the complexity of the tree structure corresponding to various datasets is different, the stability of such methods
is poor as well.

The other classes of algorithms uses different method without create a tree structure. Bei and Gray [22] introduced the
method of partial distortion to reduce the time of distance calculations. Ra and Kim [23] utilized the difference between
mean values of the query point and other data points to eliminate impossible data points. Tai et al. [24] eliminated impossible
data points using the projection values of data points. Nene and Nayar used a projection value to limit the distance from a
query point [25]. Lu et al. [26] used the norm, mean value and variance to eliminate impossible data points. Lai et al. [27]
utilized triangle inequality and projection values to accelerate the algorithm, which is now referred to as FkNNUPTI. These
methods can speed up the process of finding nearest neighbors to some extent, but their time complexities have not been
reduced any more so that they are still not enough efficient for different datasets. Xia et al. [28–30] research the affection of
dimensionality in nearest neighbors searching algorithms and proposed location differences and location difference based
algorithm (LDMDBA).

The LDMDBA has a time complexity of O(logdnlogn) that is far less than FSA and most of other algorithms. The algorithm
does not rely on any tree structure so that it can run efficiently on datasets of high dimensionality and has very good stability
in various datasets. Furthermore, the algorithm has a time complexity of O(logdlogn) for predicting a data point outside
datasets with different dimensionality. However, a small loss in prediction accuracy of the LDMDBA compared with FSA still
exists on some datasets [28]. In this paper, by increasing the number of reference points, we  further improve the prediction
precision of LDMDBA. At the same time, the time complexity is not increased.

2. Improved location difference of multiple distances based nearest neighbors searching algorithm

2.1. Location difference of multiple distances based factor (LDMDBF)

LDMDBF is a factor computed by a queried point to a reference point and used to measure the location difference instead
of Euclidean distance between them. By avoiding the direct calculations between different points, the time complexity of
location difference of multiple distances based algorithm (LDMABA) is decreased to O(nlogn). The definition of LDMDBF is
described as the following:

Definition 1. LDMDBF.

Given a database D, a point A ∈ D, and the norm denoted as ||.||:Rd→ R, the distance from O1 to A is denoted by dis (O1A).
The neighbors of point A found using the i-th reference point are denoted by neighborsi (A), and label (D’) represents labels
of all the points in D’. The label of A is determined by the sum of label (neighborsi (A)). Thus, the Location Difference of
Multiple Distances Based Factor denotes the label of A that is computed using its neighbors found by the proposed method.
LDMDBF (A) is equal to the sign of the sum of LDMDBFi(A):

LDMDBF(A) = sign(
log2d∑
i=1

LDMDBFi(A)) = sign(
log2d∑
i=1

∑
label(neighborsi(A))) (1)

where LDMDBFi(A) =
∑

label(neighborsi(A)).
The distance can be denoted as:

Disi(A) = ||A − Oi||
Function sign is expressed as the following:

sign(x) =
{

1, x >= 0

−1, x < 0

2.2. Improved location difference of multiple distances based nearest neighbors searching algorithm

In our proposed algorithm, the number of reference points is increased to be d. Refer to the description in [28], considering
the mth point A as an example and to compute neighborsi (A), all data points are, first, sorted by the values of the LDMDBFi
and a sorted sequence is obtained. The data points near A in the sorted sequence are approximate neighbors of A. In other
words, the true k-nearest neighbors of point A are mostly located in a subsequence with the center point A in the sequence.
The nearest neighbors will be more exact with a larger subsequence. The length of the subsequence varies with the number
of neighbors, and can be denoted as 2k*ε, where k is the number of neighbors in the neighbor-searching algorithm andε is a
positive value. All exact Euclidean distances between the data points in the subsequence are computed. The number of values
of the distances in all subsequences corresponding to all reference points is equal to be k*d. Those points corresponding to
the k smallest distances in the distances can be considered as the k-nearest neighbors of A.

On the basis of the design of the LDMDBA, the Improved LDMDBA algorithm is described as follows:

Algorithm 1. Improved LDMDBA (ILDMDBA).
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