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Abstract 

The model of charge-stabilized colloidal crystals with a monatomic body-centered cubic crystal lattice is proposed to determine 
elastic constants of the first and the second order. The crystals are described based on the Poisson-Boltzmann nonlinear 
differential equation. Electric behavior of the colloidal particles obeys the constant potential model. Elastic constants of the 
crystals are derived from the stress-strain dependencies obtained by means of computational simulation. Elastic constants were 
obtained for a broad range of lattice parameters. Stability of the crystals and the presence of the many-body effective interactions 
in them are briefly discussed. 
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The charge stabilized colloidal crystals are spatially ordered systems of electrically charged submicron particles 
immersed into a liquid electrolyte. They have some technological applications, in particular, in photonic crystal 
manufacture. They can also serve like models for disordered colloids and more complicated systems of micelles or 
polyelectrolytes including DNA molecules.  
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Within the model approach of the present work, colloidal crystals are treated as a medium with initial stress 
governed by the Poisson-Boltzmann (PB) nonlinear differential equation [1]. The advantage of this approach is that 
the properties of the system are fully described by solution of the PB equation and no prescribed inter-particle 
potentials are needed. Owing to the non-zero initial stress, elastic properties of charge-stabilized colloidal crystals 
have some specificity as compared with conventional crystals [2]. Information about elastic constants is important 
for specification of the constitutive equations of the crystals. 

In the paper, we describe a numerical procedure and carry out computer simulations to obtain stress-strain 
relations for the crystal with a body-centered cubic (bcc) crystal lattice. Elastic constants of the first and second 
order are then derived from these relations. Knowing the elastic constants we draw a conclusion about mechanical 
stability of the crystal. We also detect and estimate the many-body effective interaction in the system. 

2. Description of the Model 

Colloidal particles in the crystal are charged hard spheres of radius R with constant electric potential 0   on the 
surface. They are spatially ordered and embedded into the binary symmetrical univalent electrolyte (1:1 electrolyte). 
The centers of the particles are located in the nodes of the bcc crystal lattice with the lattice parameter a (linear size 
of the corresponding cubic cell).  

Electric potential in the crystal obeys the PB equation which, for the case of the 1:1 electrolyte, is  
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where 0n  is a bulk concentration of any of two species of the electrolyte, eq  is the elementary charge,  is a 
relative dielectric permittivity of the electrolyte, 0  is the electric constant, k is the Boltzmann’s constant, and T is 
an absolute temperature. To convert Equation (1) into the dimensionless form, appropriate for numerical solutions, 
Debye length   1 21 2
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   is used for normalising the distances and ekT q for normalising the electric 

potential. Only dimensionless quantities are used hereafter in the paper. Equation (1) takes the following 
dimensionless form: 

2 sinh   . (2) 

Equation (2) incorporates the non-linearity of charge distribution with respect to the electric potential. Hence, the 
non-linear effects are fully included. 

The PB equation is solved within only a single unit cell due to the spatial periodicity of the crystal. The Wigner–
Seitz cell of a bcc lattice is used as a domain for the crystal in equilibrium. In the case of non-zero strain, the domain 
is a deformed initial Wigner-Seitz cell. The interior of the particle is excluded from the domain since the electric 
potential is just a constant within it. This leads to the following (dimensionless) boundary condition on the particle: 

0  . (3) 

A set of faces of the domain is resolved into seven pairs of oppositely located faces. The periodic boundary 
conditions for the electric potential and its gradient are 
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Here m refers to a pair with opposite faces, ( )mn  and ( )' mn  are external unit normals to these faces for the m-th pair, 
and ( )mr  is a vector of primitive translations separating the faces. In the equilibrium,  (1) 1,0,0 ar ,  (2) 0,1,0 ar ,

 (3) 0,0,1 ar ,  (4) 3 2 1,1,1 ar ,  (5) 3 2 1,1, 1 a r ,  (6) 3 2 1, 1,1 a r ,  (7) 3 2 1, 1, 1 a  r  in the 

Cartesian coordinate system. Under strain, vectors ( )mr , 1, , 7m  , are transformed accordingly. 
Equation (2) and boundary conditions (3) and (4) constitute the boundary value problem for the PB equation on 

the unit cell. Solution of this problem fully describes the properties of the colloidal crystal within the adopted model 
in any particular configuration both equilibrium and deformed. The boundary value problem was solved numerically 
by the finite element method. Calculations were partly supported by the Supercomputing Center of Lomonosov 
Moscow State University [3]. 

3. Numerical Experiment 

We use the stress-strain relations in the form that, up to the first order, are written as follows [2]: 

ij ij ij ijkl klT B B    , (5) 

where ijT  is the Cauchy stress tensor, kl  is the infinitesimal strain tensor, ijB  and ijklB  are tensors of elastic 
constants of the first and second order respectively, ij  is the  Kronecker’s delta-symbol and dots designate the 
quadratic and higher order terms omitted. The series expansion (5) is valid provided that the initial stress is isotropic, 
that is the case in the present study. Elastic constants ijklB  then have full Voigt symmetry. Any symbol in the 
subscripts goes over values 1, 2, 3 that corresponds to x, y and z direction respectively. The common rule of 
summation over repeating subscripts is implied. 

Due to the high symmetry, the bcc crystal has only one independent non-zero elastic constant of the first order,
11B , and three elastic constants of the second order, 1111B , 1122B  and 1212B . They can be found in two experiments in 

which the infinitesimal strain tensors have the forms 
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respectively. Here   is a strain parameter that varies during the experiment. The first experiment provides two 
stress-strain relations 

11 11 1111T B B    , (7a) 

22 11 1122T B B    , (7b) 

while the second experiment gives 

12 12122T B   . (7c) 

Components of the Cauchy stress tensor ikT  are calculated via the fundamental stress tensor ij  associated with the 
Poisson-Boltzmann equation [5]: 
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