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a b s t r a c t

In this paper, we discuss the progress in the numerical simulation of the so-called ‘whispering gallery’
modes (WGMs) occurring inside a prolate spheroidal cavity. These modes are mainly concentrated in a
narrow domain along the equatorial line of a spheroid and they are famous because of their extremely
high quality factor. The scalar Helmholtz equation provides a sufficient accuracy for WGM simulation
and (in a contrary to its vector version) is separable in spheroidal coordinates. However, the numerical
simulation of ‘whispering gallery’ phenomena is not straightforward. The separation of variables yields
two spheroidal wave ordinary differential equations (ODEs), first only depending on the angular, second
on the radial coordinate. Though separated, these equations remain coupled through the separation
constant and the eigenfrequency, so that together with the boundary conditions they form a singular
self-adjoint two-parameter Sturm–Liouville problem.

Wediscuss an efficient and reliable technique for the numerical solution of this problemwhich enables
calculation of highly localizedWGMs inside a spheroid. The presented approach is also applicable to other
separable geometries. We illustrate the performance of the method by means of numerical experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

WGM resonators are of growing interest due to their excep-
tional properties, like an extremely high quality factor, orQ -factor,
which indicates the rate of energy loss relative to the stored energy
of the resonator. WGM resonators are encountered in numerous
applications in science and industry, in such fields as optics and
photonics [1].

An overview of the state of research on WGMs is provided in
the recent publications [2,3]. Although the theory of WGMs is well
developed, the numerical simulation of these phenomena is not
an easy task. The only exceptions are spherical and cylindrical
resonators, for which precise calculations of eigenmodes, radiative
losses, and field distributions are available [3,4].

In the recent years, numerous attempts have been made to
perform calculations ofWGMs inside resonators of a non-spherical
shape. In [5,6] a direct finite-element simulation of WGMs inside
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ellipsoidal and toroidal resonators was presented. However, the
limitations inherent in the finite-element approach do not allow
to accurately calculate extremely highly localized oscillations.

If the shape of a resonator allows separation of variables in the
modeling equation, this simplifies essentially both the analytical
and numerical analysis. Unfortunately, the above mentioned cases
of a sphere and a cylinder expire the variety of separable geome-
tries for the Helmholtz vector equation. However, WGMs inside
spheroids may be still well modeled using the scalar Helmholtz
equation which is separable in spheroidal coordinates [7,8]. A very
detailed analysis of WGMs in spheroidal cavities given in [7] can
be considered as a starting point of the present publication.

In the sequel, we report on a progress which we could achieve
in the numerical simulation of WGMs occurring inside a pro-
late spheroid. Following the considerations in [7], the WGM phe-
nomenon is simulated using the scalar Helmholtz equation. Either
Dirichlet or Neumann boundary conditions are imposed on the
boundary surface of the resonator and variables are separated in
the prolate spheroidal coordinates. In the next section, we shall
give an exact formulation of the problem arising thereby.

After the separation of variables, we obtain a system of ODEs
(prolate spheroidal wave equations), depending on either angular
or radial coordinate. These equations remain coupled via the
separation constant and the eigenfrequency. Together with the
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boundary conditions they result in a singular self-adjoint two-
parameter Sturm–Liouville problem.

The general theory of multi-parameter spectral problems is
now well-developed [9–11]. Applied to the problem at hand, it
guarantees the existence of a two-parameter eigenvalue and an as-
sociated two-component eigenfunction for any multi-index (l, k),
i.e. a pair of two non-negative integers l, k, indicating the number
of oscillations of the eigenfunction components.

The multi-index (l, k) and the azimuthal number m provide
a very convenient opportunity to single out WGMs from the
whole variety of oscillations inside a spheroid. WGMs are modes
corresponding to small indices l and k (l, k ∼ 0–3) and extra large
azimuthal numbersm ∼ 1000–10000.

Even in the simplest cases numerical solution of a singular two-
parameter Sturm–Liouville problem requires special care. First we
transfer those boundary conditions which are necessary and suffi-
cient for the solution to stay bounded, from the singular points to
the close regular points, see [12,13]. In the second step, we apply
to such a ‘regularized problem’ a properly modified algorithm de-
veloped in [14] for the evaluation of the angular ellipsoidal (Lamé)
wave functions. This algorithm is based on the WKB asymptotics1
of the bounded solutions of the prolate spheroidal wave equations,
i.e. on the related Prüfer angles, and it allows calculation of even
extremely rapidly oscillating solutions. Yet, in the WGMs case, the
rapidly oscillating angular azimuthal component is known a priori,
while the evaluated components practically do not oscillate: they
vanish on a large part of their domain and change sharply only in a
very narrow subinterval. This restricts the computational accuracy
of the Prüfer angles in case of the low-oscillatory components, and
the calculations may become unstable. In spite of that, the Prüfer
angle can be used to localize the desired eigenvalue and to provide
a very accurate initial guess for a subsequent calculation of the de-
sired WGMs using the Newton’s iteration. The latter is carried out
after the discretization of the spheroidal wave equations based on
the high-order difference schemes and provide very accurate ap-
proximation for both, theWGMeigenfrequency and the associated
solution of the scalar Helmholtz equation.

2. Prolate spheroidal coordinates and prolate spheroidal wave
functions

In this section we collect the most important facts concerning
the problem setting. For more details see [7,16] and the literature
therein.

Prolate spheroidal coordinates are introduced via their relations
to the conventional Cartesian coordinates,

x =
d
2


(ξ 2 − 1)(1 − η2) cosϕ,

y =
d
2


(ξ 2 − 1)(1 − η2) sinϕ, z =

d
2
ξη,

where ϕ ∈ [0, 2π) is the azimuthal angle, while η ∈ (−1, 1) and
ξ ∈ (1, ∞) play the roles of inclination and radius, respectively.
The corresponding coordinate surfaces are confocal two-sheeted
hyperboloids of revolution and prolate spheroids, with d being the
distance between the foci.

The eigenvalue problem for the Laplace operator defined on the
domain bounded by a spheroid ξ = ξs,

−∆W (r) = k̂2 W (r), r = (ϕ, η, ξ), ξ < ξs,

1 An asymptotic method introduced by G. Wentzel, H. Kramers, L. Brillouin, and
H. Jeffreys to obtain approximate solutions of Schrödinger equation. For a detailed
historical account and literature see e.g. [15].

is separable in spheroidal coordinates, provided that either Dirich-
let or Neumann boundary conditions are imposed. Any particular
solution of the problem is represented as a product of its angular,
radial and azimuthal part,

W (r) = S(η)R(ξ) exp(±i mϕ), m = 0, 1, . . . .

Functions S(η) and R(ξ) are bounded solutions of the angular and
radial prolate spheroidal wave equations, respectively,

d
dη

(1 − η2)
d
dη

S +


λ + c2(1 − η2) −

m2

1 − η2


S = 0,

−1 < η < 1, (1)
d
dξ

(ξ 2
− 1)

d
dξ

R +


c2(ξ 2

− 1) − λ −
m2

ξ 2 − 1


R = 0,

1 < ξ < ξs. (2)

Here λ denotes the separation constant, and c = k̂ d/2.
Note that the differential operator in (1) exhibits two singular

points at η = ±1, while Eq. (2) has a singular point ξ = 1.
Due to the symmetry of the problem, one can consider (1) on

the half-interval [0, 1), requiring the angular function S(η) to be
either odd or even, and satisfying respectively, the following initial
condition:

S(0) = 0, S ′(0) = 0. (3)

The boundary condition on the surface of the spheroid implies for
the radial function R(ξ) that either one of the following terminal
conditions holds:

R(ξs) = 0, R′(ξs) = 0. (4)

Solutions of the system (1), (2) bounded at singular points η = 1
and ξ = 1 satisfy the boundary conditions (3), (4) not for all λ and
c2. If for a pair (λ, c2) there exists a bounded non-trivial solution
to each of the problems (1), (3) and (2), (4), such a pair is called
a two-parameter eigenvalue of the system. Hereafter, we specify
eigenvalues (λ, c2)with amulti-index (l, k), inwhich the integers l
and k count the numbers of internal zeros of the associated angular
and radial functions, Slk(η) and Rlk(ξ), inside the intervals (−1, 1)
and (1, ξs). Note that the parity of the index l defines the parity of
the angular function Slk.

In addition, functions Slk(η) and Rlk(ξ) are normalized by 1

−1
S2lk(η) dη = 1,

 ξs

1
R2
lk(ξ) dξ = 1. (5)

In the sequel, the multi-index (l, k) as well as the azimuthal
numberm are fixed, andm > 0. Although the casem = 0 does not
cause any additional difficulty, it should be considered separately.
Here, we omit this case, since it plays no role in the simulation of
the ‘whispering gallery’ phenomenon.

3. Boundary conditions transferred to a regular point

The numerical technique presented below is not applicable to
singular boundary value problems, thereforewe shall formulate an
equivalent regular boundary value problem on the domain (0, 1−

δη) × (1 + δξ , ξs) with δη > 0 and δξ > 0 chosen to exclude
singular points from the integration interval.

Let us first consider Eq. (1). Here, the singularity at the point
η = 1 is indeed regular [17]. Unless m = 0, any bounded solution
of (1) behaves as [16],

S(η) ∼ (1 − η2)m/2, η → 1 − .

For (2), the singularity at the point ξ = 1 is again regular; for a
solution bounded at ξ = 1 the following asymptotic holds:

R(ξ) ∼ (ξ 2
− 1)m/2, ξ → 1 + .
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