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a b s t r a c t

We consider approximate computation of several minimal eigenpairs of large Hermitian matrices which
come from high-dimensional problems. We use the tensor train (TT) format for vectors and matrices to
overcome the curse of dimensionality andmake storage and computational cost feasible.We approximate
several low-lying eigenvectors simultaneously in the block version of the TT format. The computation
is done by the alternating minimization of the block Rayleigh quotient sequentially for all TT cores.
The proposed method combines the advances of the density matrix renormalization group (DMRG) and
the variational numerical renormalization group (vNRG) methods. We compare the performance of the
proposedmethodwith several versions of theDMRGcodes, and show that itmay bepreferable for systems
with large dimension and/or mode size, or when a large number of eigenstates is sought.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional problems are notoriously difficult to solve by
standard numerical techniques due to the curse of dimensionality—
the complexity grows exponentially with the number of degrees
of freedom. Such problems arise in various applications in physics,
chemistry, biology and engineering, but their study in numerical
linear algebra has begun quite recently.

Not many techniques are known to be capable of solving high-
dimensional problems efficiently. Among the most prominent
are Monte Carlo and quasi Monte Carlo methods, best N-term
approximations, and advanced discretization methods such as
sparse grids and radial basis functions. However, all of these
methods have their own disadvantages. For example, it is difficult
to achieve high accuracy using the Monte Carlo approach. In
turn, sparse grid techniques require sophisticated analytical and
algebraic manipulations, although still suffering (in a milder way
though) from the curse of dimensionality, which makes them
inapplicable for d & 10.

∗ Corresponding author at: University of Southampton, School of Chemistry,
Highfield Campus, Southampton SO17 1BJ, United Kingdom. Tel.: +44 7551723849.

E-mail addresses: dolgov@mis.mpg.de (S.V. Dolgov), bokh@mis.mpg.de
(B.N. Khoromskij), ivan.oseledets@gmail.com (I.V. Oseledets),
dmitry.savostyanov@gmail.com (D.V. Savostyanov).

One of the most fruitful ideas for solving high-dimensional
problems is the separation of variables. For two variables it
boils down to the celebrated Schmidt decomposition, which is
known in matrix calculus as the singular value decomposition
(SVD), a particular low-rank decomposition of a matrix. Various
generalizations of this idea to higher dimensions have been
studied, most notable are the canonical (CP) and Tucker formats,
motivated by the applications in data analysis (e.g. chemometrics),
see [1]. These classical formats have their drawbacks as well: the
CP format is in general not stable to perturbations, and the Tucker
format suffers from the curse of dimensionality. Nevertheless, in
many applications the canonical representation can be computed
efficiently using, e.g. greedy algorithms [2–4] or by a multigrid
accelerated reduced higher order SVD combined with the Tucker
format [5]. The Tucker approximation can be computed reliably
using the SVD algorithm [6], or using a fast (but heuristic) cross
interpolation algorithm [7].

Efficient methods for quantum many-body systems are based
on low-parametric tensor product formats. One of the most
successful approaches, the density matrix renormalization group
(DMRG) [8,9] is an optimization technique that uses the matrix
product state (MPS) representation [10,11], see the review [12].
The MPS and DMRG are described in a problem-specific language,
and despite becoming themethods of choice formany applications
in the solid state physics and quantum chemistry, they were
unknown in numerical analysis.
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Looking for more efficient dimensionality reduction schemes,
two groups in the numerical linear algebra community have
independently re-discovered successful tensor formats under
different names: the Tree-Tucker [13], tensor train (TT) [14],
and hierarchical Tucker (HT) [15,16] formats. The equivalence
of the TT and MPS format has been shortly discovered and
reported in [17]. This connection is very beneficial and fruitful.
The scheme of the DMRG algorithm has been applied to
different problems in numerical analysis: approximate solution
of linear systems [17,18], solution of eigenvalue problems [19],
dynamics [20], cross interpolation [21]. Elements of the DMRG can
be also found in recent algorithms for eigenproblems [22], solution
of linear systems [23,24], multidimensional convolution [25–27],
multidimensional Fourier transform [28], interpolation [29]. At
the same time, new tensor formats have been proposed, e.g. the
quantized tensor train (QTT) [30,31], and the QTT-Tucker [32].
Tensor product formats have been systematically applied to
quantum chemistry computations [33,34,5,35–37].

Extending the work [19], in this paper we propose an al-
gorithm to compute several approximate eigenpairs, e.g. excited
states, which is a typical task in quantum physics and chemistry.
Computation of several eigenvectors is equivalent to theminimiza-
tion of the block Rayleigh quotient. It is natural to apply the DMRG
framework, considering the index enumerating several eigenvec-
tors as an additional dimension.

In the seminal papers by S. White [8,9], the two-site DMRG
was already applied to the targeting of several excited states. This
method reduces the large Hamiltonian to two neighboring sites,
solves the two-site optimization problem, and then separates the
state indices. The last step recovers the original MPS structure,
and optionally adapts the TT ranks (bond dimensions) to a desired
accuracy. In the two-site DMRG the index enumerating excited
states enters as a third dimension into the reduced problem, which
may lead to a larger computational cost.

The numerical renormalization group (NRG) [38], and its im-
proved version variational NRG [39], also can be applied to target
several eigenstates (the similarity of NRG andMPSwas particularly
emphasized in [40]). In these methods the enumerator constantly
belongs to the last site. The block Rayleigh quotient formulated in
terms of the initial vectors is then formally reduced to each single
site. One-site problems are small, and the method benefits from
faster calculation of each iteration. However the (v)NRG does not
adapt the bonddimensions for targeted vectors, and simply returns
them into theMPS via averaging. Therefore, the TT ranks should be
properly guessed a priori, otherwise the convergence will not be
satisfactory.

The method proposed in this paper combines the advances
of DMRG and NRG: each local problem contains only one state
index and the eigenpair index, which travels back and forth
the tensor train during the computations. The Hamiltonian is
reduced to a single site, but the optimized MPS block contains
two dimensions—a state index and the eigenpair index. Separating
the state variable and the enumerator in the same fashion as
in the two-site DMRG, we adapt TT ranks, without considering
the neighboring dimension. The gained adaptivity for the tensor
structure empowers a fast convergence, and the overall complexity
of the method is similar to the one-site DMRG. The one-site
complexity is particularly important for solving high-dimensional
problems with a large number of states in each site, like the high-
dimensional PDEs.

The paper is organized as follows. In Section 2 definitions
of the tensor train format are introduced. In Section 3 we
present the algorithm, analyze its complexity, and compare it to
the algorithms used in quantum physics. Sections 4–6 contain
numerical experiments for the particle in a box, the Hénon–Heiles
potential and the Heisenberg model, including the comparison
of the computational speed with the publicly available DMRG
implementations.

2. Notation, definitions and preliminaries

We consider the eigenproblem AX = XΛ, with the Hermitian
matrix A = A∗. We are interested in B extreme eigenvalues λb
and their eigenvectors xb, for b = 0, . . . , B − 1. This problem is
equivalent to the minimization of the block Rayleigh quotient

trace(X∗AX) → min, s.t. X∗X = I, (1)

where X = [xb]B−1
b=0 contains the orthogonal eigenvectors.

We assume that the problem has a tensor-product structure,
i.e. all eigenvectors can be associated with d-dimensional tensors.
Specifically, the elements of a vector x = [x(i)]Ni=1 can be enumer-
ated with d mode indices i1, . . . , id by a linear map i = i1 . . . id. The
mode indices run through ik = 1, . . . , nk, where nk are referred to
as the mode sizes for k = 1, . . . , d. Naturally, N = n1 . . . nd, and
if all mode sizes are of the same order nk ∼ n, the number of un-
knowns grows exponentiallywith the dimension,N ∼ nd. Tomake
the problem tractable, we use the tensor train (TT) format [14], de-
fined as follows,

x(i) = x(i1 . . . id) = X (1)(i1) . . . X (d)(id)

=


α1...αd−1

X (1)α1 (i1) . . . X
(k−1)
αk−2,αk−1

(ik−1)X (k)αk−1,αk
(ik)

× X (k+1)
αk,αk+1

(ik+1) . . . X (d)αd−1
(id). (2)

Here and later we write equations in the elementwise notation,
i.e. assume that they hold for all possible values of all free indices.
The summation runs over all possible values of all auxiliary (or
bond) indices αk = 1, . . . , rk, where numbers r1, . . . , rd−1 are
referred to as the tensor train ranks (TT-ranks), which are known
as bond dimensions in the MPS/DMRG community. Each X (k)(ik)
is an rk−1 × rk matrix, i.e. each entry of a vector x = [x(i)] is
represented by a product of d matrices in the right-hand side. The
three-dimensional arrays X (k) = [X (k)αk−1,αk

(ik)] of size rk−1 ×nk × rk
are referred to as the TT-cores. The tensor train format is a linear
tensor network, and can be illustrated as a graph, see Fig. 1.

In this paper we represent all computed eigenvectors simulta-
neously by the block tensor train format.

Definition 1 (Block TT-format). The vectors X = [xb]B−1
b=0 are said to

be in the block-TT format, if

xb(i) = xb(i1 . . . id)

= X (1)(i1) . . . X (p−1)(ip−1)X̂ (p)(ip, b)X (p+1)(ip+1) . . . X (d)(id)
(3)

for any p = 1, . . . , d.

The choice of the mode p which carries the enumerator b is not
fixed—we will move it back and forth during the optimization.
When the position p is chosen, it means that the matrix X̂ (p)(ip, b)
is additionally parametrized by the index b. The ‘block’ TT-core
X̂ (p) = [X̂ (p)αp−1,αp

(ip, b)] is now a tensor with four indices.

Following [41], we define the interfaces X<k of size n1 . . . nk−1 ×

rk−1 and X>k of size rk × nk+1 . . . nd as follows

X<k(i1i2 . . . ik−1, βk−1)

=


α1...αk−2

X (1)α1 (i1)X
(2)
α1α2

(i2) . . . X
(k−1)
αk−2,βk−1

(ik−1),

X>k(βk, ik+1 . . . id−1id)

=


αk+1...αd−1

X (k+1)
βk,αk+1

(ik+1) . . . X (d−1)
αd−2,αd−1

(id−1)X (d)αd−1
(id).

(4)
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