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a b s t r a c t

In this paper, the state-space-split method is extended for the dimension reduction of some high-
dimensional Fokker–Planck–Kolmogorov equations or the nonlinear stochastic dynamical systems in high
dimensions subject to external excitation which is the filtered Gaussian white noise governed by the
second order stochastic differential equation. The selection of sub state variables and then the dimension-
reduction procedure for a class of nonlinear stochastic dynamical systems is given when the external
excitation is the filtered Gaussian white noise. The stretched Euler–Bernoulli beamwith hinge support at
two ends, point-spring supports, and excited by uniformly distributed load being filtered Gaussian white
noise governed by the second-order stochastic differential equation is analyzed and numerical results are
presented. The results obtained with the presented procedure are compared with those obtained with
theMonte Carlo simulation and equivalent linearizationmethod to show the effectiveness and advantage
of the state-space-split method and exponential polynomial closure method in analyzing the stationary
probabilistic solutions of the multi-degree-of-freedom nonlinear stochastic dynamical systems excited
by filtered Gaussian white noise.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Randomness always exists in the real world and hence many
problems in science and engineering can be described with
multi-degree-of-freedom (MDOF) nonlinear stochastic dynami-
cal (NSD) systems. The probabilistic solutions of NSD systems
excited by white noise or filtered white noise are governed by
Fokker–Planck–Kolmogorov (FPK) equations. Hence the applica-
tion of NSD systems and the formulation of FPK equations can be
found in various areas of science and engineering [1–5]. However,
it is difficult to obtain the exact solutions of the FPK equations for-
mulated from real nonlinear problems. Only under some restric-
tive conditions, the stationary exact solutions are obtainable for
some one, two, or few-dimensional systems. In order to solve real
problems, some methods were introduced or extended for obtain-
ing the approximate probabilistic solutions of NSD systems, such
as the path integral method [6–8], stochastic average method [9],
perturbation method [10–12], Gram–Charlier series or Hermite-
polynomial closuremethod [13], finite elementmethod [14], finite
difference method [15], and exponential polynomial closure (EPC)
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method [16,17]. It is known that these methods were used for an-
alyzing the one or two-degree-of-freedom systems or solving the
FPK equations in one to four dimensions.

Because of the challenges in analyzing the probabilistic so-
lutions of MDOF NSD systems, the problem of solving the FPK
equations in high dimensions or obtaining the probabilistic so-
lutions of NSD systems in high dimensions attracted a lot of re-
search interests in the last one century. There are two methods
that were frequently employed for analyzing the MDOF NSD sys-
tems. One is the equivalent linearization (EQL) method which was
proposed by Booton in 1954 in his investigation on the control
of electronic NSD systems [18]. The EQL method was widely in-
vestigated and employed thereafter in solving the real problems
arising from science and engineering [19,20]. Another method
applicable for analyzing MDOF NSD systems is the Monte Carlo
simulation (MCS) method which is for the numerical solution of
stochastic differential equations [21,22]. The EQL is based on the
assumption that the system responses are Gaussian and hence
the first and second moments of the system responses can be
well estimated with EQL if the system nonlinearity is weak. The
MCS can be employed for analyzing many NSD systems, but the
computational effort needed by the MCS is huge, if affordable,
when the system is large or nonlinearity is strong and the small
probability of system responses is concerned. The numerical con-
vergence, stability, round-off error, and requirement for large sam-
ple size are also challenges for the MCS method in analyzing the
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strongly nonlinear MDOF or large NSD systems. Recently a new
method named state-space-split (SSS) method was proposed for
analyzing the probabilistic solutions of theMDOF NSD systems ex-
cited by Gaussianwhite noise [23]. The SSSmethodwas further ex-
tended to analyzing the MDOF NSD systems excited by Poissonian
white noise [24]. With the SSS method, the FPK equation in high
dimensions can be reduced to some approximate FPK equations
in low dimensions. The approximate FPK equations in low dimen-
sions can then be solved with the EPC method. Hence the whole
solution procedure is named SSS–EPCmethod in the following dis-
cussion. With the SSS–EPCmethod, the system dimensions are not
limited and the systems with strong nonlinearity can also be an-
alyzed. It is known that the noises in the real world, such as the
seismic ground motion, the wind velocity, the random sea wave
motion, etc., are not white, but colored. Some of the real noises can
bemodeled as the response of the second-order differential oscilla-
tor excited by Gaussianwhite noise [25]. In this paper, the SSS–EPC
method is further extended to analyzing the stationary probabilis-
tic solutions of the MDOF NSD systems with polynomial type of
nonlinearity and excited by the colored noise described by the re-
sponse of second-order differential oscillator excited by Gaussian
white noise to verify the effectiveness of the SSS–EPC method in
this case.

2. Problem formulation

In the following discussion, the summation convention applies
unless stated otherwise. The random state variable or vector is
denoted with capital letter and the corresponding deterministic
state variable or vector is denoted with the same letter but in
lowercase.

Many problems in science and engineering can be described by
the following MDOF NSD system.

Ÿi + hi(Y, Ẏ) = βiF(t) i, j = 1, 2, . . . , ny (1)

where Yi ∈ R (i = 1, 2, . . . , ny) are the components of the vector
process Y ∈ Rny ; hi(Y, Ẏ) are the polynomial type of nonlinear
functions of Y and Ẏ, hi : R2ny → R; βi (i = 1, 2, . . . , ny), are
constants; F(t) is the excitation being filteredGaussianwhite noise
governed by the following stochastic differential equation.

F̈(t) + h(F , Ḟ) = αW (t) (2)

where α is a constant; h(F , Ḟ) is the polynomial type of linear or
nonlinear function of F and Ḟ , h : R2

→ R;W (t) is Gaussian white
noise with zero mean and auto-correlation E[W (t)W (t + τ)] =

Sδ(τ ) in which δ(τ ) is Dirac’s delta function and S is a constant
representing the power spectral density (PSD) ofW (t).

Setting Yi = X2i−1, Ẏi = X2i, f2i−1 = X2i, f2i = βiF − hi,
g2i−1 = g2i = 0 (i = 1, 2, . . . , ny), F = X2ny+1, Ḟ = X2(ny+1),
f2ny+1 = X2(ny+1), f2(ny+1) = −h(X2ny+1, X2ny+2), g2ny+1 = 0,
g2(ny+1) = α, and nx = 2(ny + 1), then Eqs. (1) and (2) can
be expressed by the following coupled Langevin equations or Ito
differential equations.

d
dt

Xi = fi(X) + giW (t) i = 1, 2, . . . , nx (3)

where X ∈ Rnx ; Xi (i = 1, 2, . . . , nx), are the components of the
state vector process X; fi(X) : Rnx → R.

The state vector process X is Markovian and the probability
density function (PDF) p(x, t) of the Markovian vector process is
governed by the FPK equation. When the white noise is Gaussian,
the stationary PDF p(x) of the Markovian vector is governed by the
following reduced FPK equation [1].

∂

∂xi
[fi(x)p(x)] −

α2S
2

∂2

∂x2nx
p(x) = 0 (4)

where x is the deterministic state vector, x ∈ Rnx .
It is assumed that the solution of Eq. (4) fulfills the following

conditions:

lim
xi→±∞

fi(x)p(x) = 0 i = 1, 2, . . . , 2ny (5)

which can be fulfilled by the responses of many real problems or
dynamical systems.

3. State-space-split method

If the joint PDF of Yi and Ẏi is needed, the joint PDF of Yi, Ẏi, F ,
and Ḟ must be obtained first in the case that F(t) is governed by
Eq. (2), which is explained in the end of this section. In order to
obtain the joint PDF of Yi, Ẏi, F , and Ḟ , separate the state vector X
into two parts as X1 = {Yi, Ẏi, F , Ḟ} = {X2i−1, X2i, Xnx−1, Xnx} ∈ R4

for i = 1, 2, . . . , or ny, and X2 ∈ Rnx−4, i.e., X = {X1,X2} ∈ Rnx =

Rnx1 × Rnx2 with nx1 = 4 and nx2 = nx − 4.
Denote the PDF of X1 as p1(x1). In order to obtain p1(x1),

integrating both sides of Eq. (4) over Rnx2 gives
Rnx2

∂

∂xi
[fi(x)p(x)] dx2 −

α2S
2


Rnx2

∂2p(x)
∂x2nx

dx2 = 0. (6)

Because of the conditions in Eq. (5), we have
Rnx2

∂

∂xi
[fi(x)p(x)] dx2 = 0 xi ∈ Rnx2 . (7)

Eq. (6) can then be written as
Rnx2

∂

∂xi
[fi(x)p(x)] dx2 −

α2S
2


Rnx2

∂2p(x)
∂x2nx

dx2 = 0

xi ∈ Rnx1 (8)

which can be equivalently written as
Rnx2

∂

∂xi
[fi(x)p(x)] dx2 −

α2S
2

∂2

∂x2nx


Rnx2

p(x)dx2 = 0

xi ∈ Rnx1 . (9)

Because
Rnx2

p(x)dx2 = p1(x1) (10)

then Eq. (7) can be further written as
Rnx2

∂

∂xi
[fi(x)p(x)] dx2 −

α2S
2

∂2p1(x1)
∂x2nx

= 0 xi ∈ Rnx1 . (11)

Clustering the terms purely in x1 in one part and the other terms
in another part, then fi(x) is decomposed into two parts as

fi(x) = f Ii (x1) + f IIi (x). (12)

Substituting Eq. (12) into Eq. (11) and noting Eq. (10) gives

∂

∂xi


f Ii (x1)p1(x1) +


Rnx2

f IIi (x)p(x)dx2


−
α2S
2

∂2p1(x1)
∂x2nx

= 0

xi ∈ Rnx1 . (13)

Denote f IIi (x) =


k f
II
i (x1, zk) in which zk ∈ Rnzk ⊂ Rnx2 . nzk is

the number of the state variables in zk. Then Eq. (13) is written as

∂

∂xi


f Ii (x1)p1(x1) +


k


Rnzk

f IIi (x1, zk)pk(x1, zk)dzk



−
α2S
2

∂2p1(x1)
∂x2nx

= 0 xi ∈ Rnx1 (14)



Download English Version:

https://daneshyari.com/en/article/502696

Download Persian Version:

https://daneshyari.com/article/502696

Daneshyari.com

https://daneshyari.com/en/article/502696
https://daneshyari.com/article/502696
https://daneshyari.com

