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In this paper we propose and evaluate a set of new strategies for the solution of three dimensional sepa-
rable elliptic problems on CPU-GPU platforms. The numerical solution of the system of linear equations
arising when discretizing those operators often represents the most time consuming part of larger simula-
tion codes tackling a variety of physical situations. Incompressible fluid flows, electromagnetic problems,
heat transfer and solid mechanic simulations are just a few examples of application areas that require
efficient solution strategies for this class of problems. GPU computing has emerged as an attractive alter-
native to conventional CPUs for many scientific applications. High speedups over CPU implementations
have been reported and this trend is expected to continue in the future with improved programming
support and tighter CPU-GPU integration. These speedups by no means imply that CPU performance is
no longer critical. The conventional CPU-control-GPU-compute pattern used in many applications wastes
much of CPU’s computational power. Our proposed parallel implementation of a classical cyclic reduction
algorithm to tackle the large linear systems arising from the discretized form of the elliptic problem at
hand, schedules computing on both the GPU and the CPUs in a cooperative way. The experimental result

demonstrates the effectiveness of this approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The era of single-threaded processors has come to an end due
to the limitation of the CMOS technology and in response, most
hardware manufacturers are designing and developing multi-
core processors and specialized hardware accelerators such as
GPUs [1-3]. As a consequence, applications can only improve their
performance if they are able to exploit the available parallelism of
the new architectures.

In this paper we study the implementation of a fast solver based
on a block cyclic reduction algorithm to tackle the linear systems
that arise when discretizing a three dimensional separable ellip-
tic problem with standard finite difference. A clear example of the
importance of dealing efficiently with three dimensional elliptic
systems is found in the numerical simulation of incompressible
fluid flows. Indeed, the most time consuming part of almost any
incompressible unsteady Navier Stokes solver (i.e., incompressible
fluid dynamic simulation codes) is related to the solution of a pres-
sure Poisson equation at each time step (see for instance [4]). The
achievement of a satisfactory computational efficiency to tackle
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this class of elliptic partial differential equations is therefore a key
issue when simulating unsteady fluid flow processes (turbulent
flows for instance).

Other authors have addressed topics which are somehow
related to the present contribution. C. P. Stone et al. [5] analyze the
performance of a block tridiagonal benchmark on GPUs. This is the
first known implementation of a block tridiagonal solver in CUDA
but the pattern of the block matrices they analyzed differ from our
target problem. The sub-matrix element rank (m) was assumed to
be small (m = 5). In our case both m and the arithmetic intensity
of problem are higher.

For distributed multicore clusters, the BCYCLIC algorithm de-
veloped by Hirshman et al. [6] is able to solve linear problems with
dense tridiagonal blocks. Our target algorithm, the BLKTRI code [7]
is not well-suited for dense blocks but it is the most popular ap-
proach for solving block tridiagonal matrices which arise from sep-
arable elliptic partial differential equations.

Many authors have studied the implementation of scalar tridi-
agonal solver on GPUs [8-13]. D. Goddeke et al. [8] proposed an
efficient implementation of the Cyclic Reduction (CR) algorithm,
which is used as a line smoother in a multigrid solver. Yao Zhang
et al. [9] proposed some hybrid algorithms that combine CR with
other tridiagonal solvers such as Parallel Cyclic Reduction (PCR) or
Recursive Doubling (RD). More recently, H. Kim et al. [ 12] have ana-
lyzed other hybrid algorithms and found that a combination of PCR
and Thomas gave the best overall performance.
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The rest of this paper is structured as follows. Section 2 intro-
duces the extended block cyclic reduction algorithm used by the
BLKTRI solver. Section 3 gives a brief description of the standard
algorithms for solving scalar tridiagonal systems. In Section 4 we
detail the mapping of the BLKTRI solver on multicore and GPUs and
analyze their performance and then in Section 5 we extend our dis-
cussion to 3D problems. Finally, Section 6 concludes summarizing
the most relevant contributions.

2. Three dimensional elliptic systems

In this section, we explain the strategy followed to solve a
classical 3D Poisson equation:
d%u N 9%u N 9%u £ )
St T =fky.z
oxz 0y 0z2 Y
defined on a Cartesian domain §2 with prescribed conditions on its
boundary 9£2.

Discretizing the domain using a Cartesian mesh uniform along
each direction, for each (i, j, k) interior node we obtain:

870, . k) 482G 4. k) + 82 j. k) = fiju (1)
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are the finite difference centered approximations to the second
derivatives along each direction. The boundary conditions that
we will consider are either of Dirichlet or Neumann type on the
surfaces normal to the y and z directions and periodic in the x
one. The periodic condition applied in one of the directions allows
to uncouple the 3D problem into a set of several independent 2D
problems (Fig. 1) using a discrete Fourier transform. Hereafter we
will briefly explain how the decoupling process takes place. Let N
be the number of equispaced nodes in the x direction that cover
the interval (0, 27). We expand the unknown function u(x, y, z)
and f (x, y, z) in Fourier series as:
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where il  x is the Ith Fourier coefficient of the expansion. Next, the
expansion is used in Eq. (1), obtaining the relationship:
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Eq. (3) is equivalent to the set of N equations (I = 1...N):
Uy j k(2cos(er) — 2) + Upjpa e — 285k + Ojok
Ax? Ay?

Lkt = ZZIZJ;k R Fijx (4)
having used the identity e +e~® = 2cos(«). In short (4) reads as:
Uy j,k + Ui jot n Uy j k1 + U j k-1

Ay? Az2

I=1...N (5)

with 8;/2 = cos(a) —1/Ax* —1/ Ay? —1Az%. Thus, by considering
the Fourier transform (direct FFT) of F one obtains a set of N, 2D

+ Bk = Fijx,

independent problems having as unknowns the Fourier coeffi-
cients i, | = 1...N.Each independent problem concerns the
solution of a linear system of equations which coefficient matrix is
block tridiagonal. Of course, each one of these linear systems can
now be solved in a distributed fashion, in parallel. Once the solu-
tion is obtained in Fourier space a backward FFT can be used to re-
cast the solution in physical space. Fig. 1 provides an algorithmical
sketch of the method.

To deal with each decoupled 2D problem, we have chosen a
direct method based on a block cyclic reduction algorithm. As
shown above, the whole method provides for a blend of coarse
and fine-grain parallelism that can be exploited when mapped on
heterogeneous platforms.

2.1. Extended block cyclic reduction

In this subsection we briefly summarize a classical direct
method for the discrete solution of separable elliptic equations
based on a block cyclic reduction algorithm [7]. This method is
commonly used when tackling the solution of a linear system of
equations arising from the second order centered finite difference
discretization of 2D separable elliptic equations. From the stand-
point of computational complexity (speed and storage), foram x n
grid, its operation count is proportional to mn log, n, and the stor-
age requirements are minimal, since the solution is returned in the
storage occupied by the right side of the equation (i.e., m x nloca-
tions are required). More in details, consider the 2D separable el-
liptic equation having u(x, y) as unknown field (Poisson equation
is a particular case of what follows):
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If we discretize (6) with given Dirichlet or Neumann boundary
conditions assigned on the edges of a square, using the usual five-
point scheme with the discrete variables ordered in a lexicographic
fashion, we obtain a linear system of m x n equations (having m
nodes in the x direction and n in y one): Au = g, where A is a block
tridiagonal matrix:
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and the vectors 1 and g are consistently split as a set of sub-vectors
Ujand g, j = 1...n, of length m each (i.e., the solution along the
jth domain row):

g

oo - T
g= [Yl, Y2,~-~,Yn] .

There is no restriction on m; however, cyclic reduction algo-
rithms require n = 2¥, with large values of k for optimal perfor-
mances. The blocks A;, B; and C; are m x m square matrices. In
particular, the BLKTRI algorithm requires them to be of the form:

u= [li], lfz,..

Al‘ = q;l (7)
B; = B+ bil (8)
G=cql (9)

where a;, b; and ¢; are scalars. Having used a standard five point
stencil for the discretization of (6), the matrix B is of tridiagonal
pattern. The solution is obtained using an extended cyclic reduction
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