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a b s t r a c t

In this paperwe review a recently developed finite-difference time-domain (FDTD) iterative technique for
the analysis of periodic structures at oblique incidence.We showhow it can be implemented in FDTD code
and estimate required computer memory and time resources. To illustrate performance of our technique
we demonstrate the plasmon formation in a thin gold film placed at air/glass interface and calculate
reflectance from silicon textured coating at oblique incidence.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Finite-difference time-domain (FDTD) [1–3] is one of the most
popular numerical methods in computational electrodynamics. It
is widely used for the calculation of transmission and reflection
for planar layers of scatterers, like photonic crystals or antenna
arrays. Transmission and reflection can be obtained by simulating
the propagation of a temporal electromagnetic impulse through
the considered structure. A numerical experiment needed to obtain
transmission and reflection properties of a layermay become quite
complicated if we consider oblique wave incidence.

The usual simulation scheme for obtaining transmission and
reflection from FDTD calculation consists of the following. An in-
cident plane wave is generated in FDTD space as coming from out-
side the structure with the required direction. Usually it has a wide
wavelength spectrum, so the transmission and reflection may be
obtained for a range of frequencies from one simulation. To gener-
ate a plane wave in FDTD several techniques may be applied, the
most efficient of them is the Total Field/Scattered Field method [1]
which we discuss below.

In the case of periodicity in planar direction a single unit cell
with periodic boundary conditions may be simulated (Fig. 1). At
normal incidence of the incoming plane wave due to the symmetry

∗ Corresponding author. Tel.: +1 647 832 80 80.
E-mail address: deinega@northwestern.edu (A. Deinega).

of the system we have

F(x, t) = F (x ± a, t) , (1)

where F is the electric or magnetic field (E or H), a is a lattice
translation vector parallel to the structure surface, x and t are
coordinates in space and time. Eq. (1) taken at boundary points x of
the simulated unit cellmay be used as boundary conditions, stating
that the fields at opposite boundaries should be equal. These
boundary conditions are implemented in FDTD by simply using the
same grid points for both boundaries. Absorbing PerfectlyMatched
Layers (PMLs) [1] are usually used for non-periodical direction
and absorb the reflected and transmitted waves modeling their
withdrawal to the infinity.

In the course of simulation the numerically obtained fields at
locations corresponding to transmitted and reflected waves are
recorded. The transmitted fields are recorded behind the planar
structure, and the reflected fields are recorded in front of it
(taking into account the incident wave). Total exit of the radiation
from the structure determines the simulation time. The recorded
transmitted and reflected waves are transformed to the frequency
domain and normalized to the incident spectrum to calculate
transmittance (reflectance).

At oblique incidence periodic boundary conditions analogous
to (1) contain a time shift. In 2D they take a form (generalization
for 3D case is straightforward)

F(x, t) = F (x ± a, t ± δt) , (2)
δt = a sin θ/c, (3)
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Fig. 1. FDTD geometry setup for single unit cell of photonic crystal slab, consisting
of a square lattice of spheres. Unit cell is confined by periodic boundaries 1 and
2. The virtual total field/scattered field (TF/SF) surface 3 generates incident plane
wave impulse impinging the cell. PMLs absorb reflected and transmitted waves
simulating their withdraw to infinity.

where θ is the angle of incidence, c is the speed of light in the inci-
dentmedium. Themeaning of the expression (2) can be clarified by
Fig. 1. Obliquewave comes to periodic border 1 earlier than to peri-
odic border 2. Therefore the field values at these borders are shifted
in time. Using of periodic boundary conditions requires knowledge
of retarded field values at border 1 (for applying at border 2) and
advanced field values at border 2 (for applying at border 1). The
retarded fields can in principle be picked up from a recorded wave
propagation. Obtaining the advanced fields constitutes a problem
since they are unknown during numerical experiment.

Several methods were proposed to deal with this problem.
These methods can be classified in three groups.

In the first group, a special field transformation is used to
eliminate the time shift between the adjacent unit cells [4–10].
However, the transformed equations differ from the standard
Maxwell’s equations and their numerical solution becomes unsta-
ble when the angle of incidence approaches θ = 90°. Besides this,
additionalmodification of themethod is required to handle disper-
sive [11–15], anisotropic [16] and nonlinear [17] structures.

In the second group of methods, which are referred to as ‘‘spec-
tral’’, time shifted periodic condition (2) is replaced by the com-
plex Bloch boundary condition F(t + a sin θ/c) = F(t) exp(iα),
formulated for the time domain. Usingmonochromatic initial inci-
dent wave F(t) = F(0) exp(iωt) with the frequency ω satisfying
α = ωa sin θ/c one can get results for a single frequency per
simulation [18]. To obtain the results for a wider frequency range
one can apply a non-monochromatic incident wave. In this case
the time-domain solution is regarded as an intermediate result.
At the final stage of the calculation one should transform into
the frequency domain where results for a range of (ω, θ ) pairs
can be extracted [19–22]. The time-dependent solution for the
fields is not available in spectral methods, which is a serious draw-
back for such applications, as molecular nanopolaritonics [23,24],
where the charge transport between nanoparticles and molecules
is studied and a coupled system ofMaxwell/Schrödinger equations
should be solved [24–26]. Direct time-dependent FDTD simulation
is also necessary within novel FDTD approaches to solve Maxwell-
Liouville equations for single quantum emitters (such as quantum
dots or single molecules) [27].

In the third group of methods additional unit cells are intro-
duced to simplify getting the time-advanced field values. In the
multiple unit cells method [28,29] these cells are added along the
direction from which the incident wave arrives. This sequence of
cells is terminatedbyPMLs. The terminating cell is a source of error,
the magnitude of which depends on the number of additional cells
and the incidence angle. In the angled-update method [1] mesh
points are updated non-simultaneously, which allows one to ob-
tain the future field values from the time-advanced adjacent cells.

The drawback of this method is a restriction to small angles (in 3D
case the angle of incidence is limited to 35°).

In our previous workwe introduced a newmethod for the anal-
ysis of periodic structures at oblique incidence [30]. This method
cannot be classified into any of the presented above groups since
it is based on a different principle. Our method implies perform-
ing several FDTD numerical experiments, which we call iterations
later on. Field values at the periodic boundaries are recorded dur-
ing each iteration. It gives the key to a solution of the problemwith
the advanced field values: even if they are unknown at the current
iteration, they are known at the previous one since field history
have been recorded. Time shifted field values from the previous it-
eration can be used at the current iteration as an approximation for
the advanced fields. As we have shown in our previous work [30],
the difference between the true advanced fields and the approx-
imate ones decreases from iteration to iteration, so the iterative
process converges. To manage this iterative process we use ‘‘soft’’
Total field/Scattered field (TF/SF) correction [1] instead of ‘‘strong’’
periodic conditions (2). This TF/SF correction acts like periodic con-
ditions (2) after a number of iterations required for convergence.

In the previous work we have been focused on the basic
principle of iterative method and its verification. In this paper we
describe its numerical implementation.

The paper is organized as follows. In Section 2 we present the
main idea of themethod. In Section 3wediscuss how to implement
the method in an FDTD code. In Section 4 we illustrate the work of
the method for some physical examples. In Sections 6 and 5 we
discuss the performance and convergence issues. In Section 7 we
summarize our results.

2. Method

In the following we will refer to the FDTD contour path
approach and the Total field/Scattered field (TF/SF) technique [1],
so we need to review these methods here.

FDTD discretization of Maxwell’s equations can be derived us-
ing the contour path approach. This approach is helpful for formu-
lation of TF/SF technique which is a part of our iterative method.
FDTD discretization proposed by Yee [3] does not necessarily need
to be formulated within this approach, however, we will still use it
to describe our iterative technique.

Contour path approach deals with the integral formulation of
Maxwell’s equations:
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where the line and surface integrations are performed over an
arbitrary flat contour l in space and its internal enclosed area S
correspondingly. Here for simplicity we consider linear, isotropic,
nondispersive materials. Eqs. (4) may be rewritten in a discretized
central-difference form:
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where ∆t is the time step, the subscript c denotes the field mea-
sured at the center of the contour (output point) and the subscript
i denotes the field observed at the edge centers along the contour
(input points) (see Fig. 2). Eqs. (5), (6) are used to express the fields
at the next time step via the fields at the previous step:
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