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a b s t r a c t

In this work, a new technique based on Green’s function and the Adomian decomposition method (ADM)
for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on
constructing Green’s function before establishing the recursive scheme for the solution components. In
contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a
sequence of transcendental equations for the undetermined coefficients. It approximates the solution in
the form of a series with easily computable components. Additionally, the convergence analysis and the
error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed
method are demonstrated by several numerical examples. The numerical results reveal that the proposed
method is very efficient and accurate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and efficient numerical methods are often necessary
for the solution of nonlinear singular boundary value problems
(SBVPs) for ordinary differential equations. Such nonlinear SBVPs
arise very frequently in many branches of applied mathematics
and engineering such as chemical reactions, gas dynamics, electro-
hydrodynamics, nuclear physics, atomic structures, atomic calcu-
lations, and in the study of positive radial solutions of nonlinear
elliptic equations, physiological studies, in the study of steady-
state oxygen diffusion in a spherical cell [1] and the distribution
of heat sources in the human head [2].

The main objective of this work is to introduce an efficient nu-
merical technique based on the recent work of Singh et al. [3],
where the authors transformed original weakly singular prob-
lem with Dirichlet and Robin boundary conditions into an inte-
gral equation before establishing the recursive scheme for the
approximate solution. Here, we consider the following class of
strongly nonlinear SBVPs with Neumann and Robin boundary con-
ditions [4–8]

u′′(x)+
α

x
u′(x) = f (x, u(x)), 0 < x ≤ 1, α ≥ 1

u′(0) = 0, au(1)+ bu′(1) = c,


(1.1)
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where a > 0, b ≥ 0 and c are any finite real constants. It is also
assumed that for every (x, u) ∈ {(0, 1] × (0,∞)}, the nonlinear
function f (x, u) aswell as its partial derivative ∂ f

∂u is continuous and
the condition ∂ f

∂u ≥ 0 be satisfied. Eq. (1.1) arises frequently in ap-
plied sciences and engineering. For α = 1 and f (x, u) = uγ , where
γ is a physical constant, the above equation is used to study ther-
mal explosions [9]. For α = 2 and f (x, u) =

θu
u+κ , θ > 0, κ > 0,

it has applications for finding the steady-state oxygen diffusion in
a spherical cell with Michaelis–Menten uptake kinetics [1]. Dug-
gan and Goodman [2] studied the equation (1.1) with α = 2 and
f (x, u) = −δ1e−θ1u, θ1 > 0, δ1 > 0 to find the distribution of heat
sources in the human head. Another application arises for α = 2
in the theory of electro-hydrodynamics with f (x, u) = νeu, where
ν is a physical parameter [6].

The numerical study of the SBVPs arising in various physical
models has attracted the attention of many authors [1–22] and
many of the references therein. The major difficulty of solving
Eq. (1.1) is because of its singular behavior at x = 0. A variety
of methods have been applied to tackle such SBVPs, for example,
the cubic spline and the finite difference methods [4,5,9,13,14,20].
Although, these numerical methods have many advantages, but a
huge amount of computational work is needed which combines
some root-finding techniques for obtaining accurate numerical
solution especially for nonlinear SBVPs.

Recently, somenewlydevelopednumerical-approximatemeth-
ods, such as the Adomian decomposition method (ADM), modified
Adomian decomposition method (MADM) and Homotopy anal-
ysis method (HAM) [6,7,19,22], have been applied to obtain an
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approximate solution of the Eq. (1.1). It is well known that solv-
ing SBVPs (1.1) using ADM/MADM or HAM is always a computa-
tionally involved task as it requires computation of undetermined
coefficients in a sequence of nonlinear algebraic or more difficult
transcendental equations. Moreover, in some cases the undeter-
mined coefficients may not be uniquely determined and this may
be the major disadvantage of these methods for solving nonlinear
SBVPs.

Most recently, the variational iteration method (VIM) and its
modified versions have also been employed in the literature
[8,21,23]. These methods give good approximations only for lin-
ear problems and nonlinear problems with nonlinearity of the
form un, uu′, u′n . . . , etc. However, these methods fail to solve the
equation when the nonlinear function is of the form eu, ln(u),
sin u, sinh u . . . , etc., see Wazwaz and Rach [23] for more details.
Nevertheless, applications of VIM for solving nonlinear problems
are very restrictive.

1.1. Review of ADM

In this subsection, we briefly describe ADM for solving SBVPs
(1.1). Recently, many researchers [6,7,17,18,22,24–29] have used
the ADM for solving different scientific models. Adomian [27]
asserted that the ADM provides an efficient and computationally
suitable method for generating an approximate series solution for
differential equations.

According to the ADM, the SBVPs (1.1) can be written in the
operator form as

Lu(x) = f (x, u(x)), (1.2)

where L is a linear second order differential operator defined by

L = x−α d
dx


xα

d
dx


.

The inverse operator L−1 is given by

L−1
[·] =

 x

0
x−α

 x

0
xα[·]dxdx. (1.3)

Operating L−1
[·] on both sides of (1.2) and using the condition

u′(0) = 0, we obtain

u(x) = c1 + L−1
[f (x, u(x))], (1.4)

where u(0) = c1 ≠ 0 is an unknown constant to be determined.
The solution u(x) and the nonlinear function f (x, u(x)) are

decomposed by an infinite series as

u(x) =

∞
j=0

uj(x) and f (x, u(x)) =

∞
j=0

Aj, (1.5)

where Aj, j = 0, 1, 2, . . . are Adomian’s polynomials which can
be generated for various classes of nonlinear functions with the
formula given in [24,30] as:

An =
1
n!

dn

dλn


f


x,

∞
k=0

ukλ
k


λ=0

, j = 0, 1, 2, . . . . (1.6)

By substituting the series (1.5) into (1.4), we have

∞
j=0

uj(x) = c1 + L−1


∞
j=0

Aj


. (1.7)

Upon comparing both sides of (1.7), the ADM is given by

u0(x) = c1,
uj(x) = L−1

[Aj−1], j ≥ 1.


(1.8)

The recursive scheme (1.8)will lead to the complete determination
of the components un(x, c1) of the exact solution u(x). The series
solution of u(x) follows immediately with the unknown constant
c1 which will be determined by using the boundary condition at
x = 1. Hence, the n-term truncated approximate series solution is
obtained as

φn(x, c1) =

n
j=0

uj(x, c1). (1.9)

Several researchers [6,7,22,25,26,28,29] have used the ADM or
MADM to solve nonlinear boundary value problems (BVPs) for
ordinary differential equations. However, solving such nonlinear
BVPs using ADM or MADM is always a computationally involved
job since it requires the computation of unknown constants in a
sequence of difficult transcendental equations which increases the
computational work.

In order to avoid solving a sequence of difficult transcendental
equations for two-point boundary value problems, we propose
an improved decomposition method (IDM) to overcome the
difficulties occurring in ADM or MADM for solving nonlinear
SBVPs. The proposed IDM is based on Green’s function and ADM.
This technique relies on constructing Green’s function before
establishing the recursive scheme for the solution components.
In contrast to the existing recursive schemes based on the ADM,
the proposed IDM avoids solving a sequence of transcendental
equations for the undetermined coefficients. An approximation
of the solution is obtained in the form of a series with easily
computable components. Additionally, the convergence analysis
and the error estimate of the proposed method are supplemented.
The reliability and efficiency of the proposed method are
demonstrated by several numerical examples. The numerical
results reveal that the proposed method is very efficient and
accurate.

2. The improved decomposition method (IDM)

In this section, we propose a new approach based on Green’s
function and ADM for solving nonlinear SBVPs (1.1). To this end,
we consider the homogeneous version of (1.1) as follows:
(xαu′(x))′ = 0, 0 < x ≤ 1,
u′(0) = 0, au(1)+ bu′(1) = c. (2.1)

Its unique exact solution is given by

û(x) =
c
a
. (2.2)

We again rewrite SBVPs (1.1) with homogeneous boundary condi-
tions as
(xαu′(x))′ = xα f (x, u(x)), 0 < x ≤ 1,
u′(0) = 0, au(1)+ bu′(1) = 0. (2.3)

Green’s function of the problem (2.3) can easily be obtained as fol-
lows:

G(x, ξ) =


ln ξ −

b
a
, 0 < x ≤ ξ ≤ 1, for α = 1

ln x −
b
a
, 0 < ξ ≤ x ≤ 1,

(2.4)

and

G(x, ξ) =


ξ 1−α − 1
1 − α

−
b
a
, 0 < x ≤ ξ ≤ 1, for α > 1

x1−α − 1
1 − α

−
b
a
, 0 < ξ ≤ x ≤ 1.

(2.5)

The derivation of Green’s function is provided in the Appendix.
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