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Abstract 

Classical continuum models are unable to describe the size effect in nano/micro structures, even though this effect is observed 
experimentally. Therefore, modified continuum models are frequently applied for the investigation of nanomechanics due to their 
computational efficiency and capability of providing accurate results which are comparable to the atomistic models. In this paper, 
the Mindlin plate is extended to the piezoelectric nanoplate with nonlocal and gradient theories for size effect. The governing 
equations for bending moments, normal and shear stresses are derived via the Hamilton`s principle. Differences between the two 
theories are described. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the issue editors. 
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1. Introduction 

Over the past two decades, nanostructures have attracted much attention among the scientific research community. 
Due to their superior features, the application of nano/micro structures was expanded into many areas such as nano-
electromechanical devices, space and bio-engineering, actuators, and nanocomposite. To make the design of 
nanostructures in a real manner, it is important to study the mechanics of systems at nanometer scale. Experimental 
techniques as well as discrete atomistic methods such as molecular dynamics (MD) simulations are either extremely 
difficult or highly expensive. Size effect phenomenon can be observed if the component dimension is comparable to 
the material length scale [1-4]. Modified continuum models are frequently applied for the investigation of 
nanomechanics due to their computational efficiency and the capability of providing accurate results which are 
comparable to atomistic models.  The couple-stress theory [5,6] is one of the higher-order theories, which contains 
two length-scale parameters.   A modified couple-stress theory [7] contains only one material length-scale parameter.  
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Li and Pan [8] applied this theory for size-dependent functionally graded piezoelectric microplate. The same approach 
was applied by Jomehzadeh et al. [9] to study the vibration of microplates described by the Kirchhoff plate model. 
Ma et al. [10] developed a non-classical Mindlin plate model based on a modified couple-stress theory. A theory for 
nano-sized elastic dielectrics with the electric field-gradient and electrostatic force effect based on a variational 
principle was developed by Hu and Shen [11]. Size effect due to both the electric field gradient and surface effects in 
dielectrics was considered there. These authors also developed a more sophisticated theory, where the flexoelectricity 
and electrostatic force effects were included [12]. Liang et al. [4] presented the theoretical investigation of the size-
dependent Bernoulli-Euler dielectric nanobeam described by the strain gradient elasticity. 

The other way to consider the size effect for micro/nano structures is the nonlocal elasticity theory proposed by 
Eringen [13]. In this nonlocal theory, the stress at a reference point is a functional of strains at more points of the body. 
The nonlocal elasticity theory explains satisfactorily some phenomena such as the high frequency vibration and wave 
dispersion. A review of the literature indicates that the nonlocal theory is frequently applied for various nanostructures 
such as the carbon nanotubes, graphene sheets and piezoelectric nanoplates [14]. The free vibration of Mindlin 
rectangular nanoplates was analyzed by Hosseini-Hashemi et al. [15] by introducing some auxiliary and potential 
functions. The free vibration of size-dependent magneto-electro-elastic nanobeams was studied by Ke and Wang [16]. 
The thermo-electro-mechanical free vibration of piezoelectric nanobeams was investigated by Ke and Wang [17]. The 
Galerkin finite element formulation for nonlocal elastic Euler–Bernoulli beam and Kirchoff plate was presented by
Phadikar and Pradhan [18]. Liu et al. [19] analyzed free vibration of piezoelectric nanoplates described by Kirchhoff 
theory and nonlocal elasticity. An efficient computational approach based on a refined plate theory including the 
thickness stretching, namely quasi-3D theory, in conjunction with isogeometric formulation was proposed by Nguyen 
et al. [20] for the size-dependent bending, free vibration and buckling analysis of functionally graded nanoplate 
structures. Sobhy [21] investigated the bending response, free vibration, mechanical buckling and thermal buckling 
of functionally graded material (FGM) nanoplate which is located in an elastic medium.  

One can see that both nonlocal and gradient theories have been applied to the analyses of piezoelectric nanoplates.  
The goal of the present paper is to compare both theories and to show their differences. The Mindlin plate theory is 
described by the nonlocal and gradient elasticity for piezoelectric nanoplates. The governing equations for the bending 
moment, normal and shear stresses are derived from the Hamilton`s principle. The electric field along the plate 
thickness can be expressed through the gradients of the plate rotations. The governing equations for harmonic 
oscillation are also obtained from the general time dependent formulation.  

2. Nonlocal theory for Mindlin plate 

We consider a plate of thickness h with homogeneous piezoelectric material properties with its mean surface 
occupying domain  in the 1 2( , )x x -plane. The axis 3x z  is perpendicular to the mid-plane (Fig.1) with the origin 
at the mid plane. The Cartesian coordinate system is introduced such that the bottom and top surfaces of the plate is 
placed in the planes z = -h/2 and z = h/2, respectively. The linear strains are given by [22]:  

  11 3 10,1 1,1( , , ) ( , )x u zwx x ,             22 3 20,2 2,2( , , ) ( , )x u zwx x , 

 12 3 10,2 20,1 1,2 2,1

1 1
( , , ) ( ) ( , ) ( , )

2 2
x u u z w wx x x    ,      13 1 3,1( , ) ( , ) ( , ) / 2w wx x x , 

  23 2 3,2( , ) ( , ) ( , ) / 2w wx x x ,                                                                                                                                   (1)          

where the in-plane displacements in 1x - and 2x -directions are denoted by 10u  and 20u . Rotations around 2x - and 1x

-axes are denoted by 1w  and 2w , and 3w  is the out-of-plane deflection.  

In nonlocal elastic theory the stress at a reference point x depends on the strain at other points x` in the vicinity of 
x [23]. Accordingly, the basic constitutive equations for a piezoelectric solid are given by 

( , ) ( , ) ( , ) ( , )ij ijkl kl kij kc e E dx x x x x x ,                                                                                     (2)

( , ) ( , ) ( , ) ( , )j jkl kl jk kD e h E dx x x x x x ,                                                                                                (3) 

where { , }ij iE  is the set of  the secondary field quantities (strain, electric field) which are expressed in terms of the 
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