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Abstract

In this paper, we present a new algorithm for all-hex meshing of domains with multiple regions without post-processing cleanup.

Our method starts with a strongly balanced octree. In contrast to snapping the grid points onto the geometric boundaries, we move

points a slight distance away from the common boundaries. Then we intersect the moved grid with the geometry. This allows us to

avoid creating any flat angles, and we are able to handle two-sided regions and more complex topologies than prior methods. The

algorithm is robust and cleanup-free; without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is also

more predictable than prior art.
c© 2016 The Authors. Published by Elsevier Ltd.
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1. Introduction

We are given a 3d domain D of multiple regions, defined by a standard b-rep boundary representation. An all-

hex meshM has only hexahedral elements, and accurately represests the domain D. The quality of the mesh plays

a significant role in the accuracy and stability of numerical simulations or solution of PDEs, e.g., Finite Element

Analysis (FEA) [1–3] and Computer-Aided Design (CAD) [4,5].

In 2d, unstructured all-quad meshing algorithms are usually categorized into two main categories: indirect and

direct. A classical indirect approach starts with a triangular mesh, and then transforms the triangular elements into

quadrilateral elements, via optimization [6,7], refinement and coarsening [8], or simplification [9]. A class of indirect

methods start with a triangular mesh and applies the mid-point subdivision rule [10,11] to split a triangle into three

quad elements. This can be achieved using local subdivision operations. For example, [12] implements a recursive

subdivision algorithm based on a regular tiling composed of only diamonds and kites, but does not handle domain

boundaries. Q-Morph [13] is a popular indirect approach that follows a sequence of systematic triangle transforma-
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tions to create an all-quadrilateral mesh. However, Q-Morph requires topological cleanup and smoothing to guarantee

the quality of the final all-quad mesh. Q-Tran [14] is another indirect algorithm that produces quadrilaterals with

provably-good quality without a smoothing post-processing step, and manages to handle domain boundaries. Nev-

ertheless, the class of indirect methods typically suffers from a large number of irregular nodes that are connected

to more (or less) than four mesh elements, which is typically undesired in several numerical simulations. Direct

approaches, on the other hand, construct quadrilaterals directly. The advancing front algorithms (e.g., the paving

algorithm [15]) successfully generate all quad meshes with high quality, by placing mesh points on the boundaries of

the input domain and form quad elements by recursively projecting edges on the front towards the interior of the do-

main until the whole domain is covered with quads [16,17]. However, they suffer from stability problems that require

heuristic cleanup operations. Grid based methods construct a uniform Cartesian or quadtree background grid and aim

at modifying that grid to conform to the domain boundaries [18,19]. These methods are easy to implement and can

provide quality guarantees and angle bounds [20–22]. However, they often result in inverted elements.

In 3d, the all-hex meshing problem has not been completely solved yet. Many diverse approaches have been

tried, including constructing meshes from volumetric data [23], from surface quad meshes [24], using the medial axis

transform [25], using midpoint subdivision [26], singularity-restricted frame fields [27], and volumetric PolyCube de-

formation [28]. However, automating these types of methods [29–31] faces several challenges, especially when proper

meshing constraints are taken into consideration [32]. Many methods can only achieve hex-dominant meshes [33,34]

and some require parallel implementations [35]. Different applications require different mesh properties, which makes

the choice of the proper meshing approach more difficult [36–38].

1.1. Grid-based Hex Meshing

Our approach belongs to the grid-based or octree family of methods [19,39–41]. The two key challenges for octrees

are to capture the domain boundary with high-quality hexes [37], and to generate all-hex elements in the presence of

hanging nodes arising from size transitions. In addition, these methods tend to produce a large number of hexes. To

capture the boundary, a common approach is to introduce a boundary layer of hexes. Pillowing is one method. For

each hex, one face is on the boundary and the opposite face mates with a face of the axis-aligned octree. High quality

hexes are challenging with this abrupt orientation change, and smoothing is typically required. Interior to the domain,

a variety of transition templates are used to resolve hanging nodes. Early work [19] had fairly restrictive templates,

and these have been expanded to allow more rapid and flexible size transitions [40,41]. Hexotic [39] adds ideas from

midpoint subdivision to its octree to reduce the number of hexes generated. Its dual transition templates ensure that

every corner and hanging node of the octree has six edges, each of which has four faces, but the polyhedral cells are

not necessarily hexes. This can be immediately dualized to form hexes, which is equivalent to performing midpoint

subdivision on the hexes, then combining the eight hexes surrounding each original node.

1.1.1. Snapping
Hexotic and dual contouring, among others, snap (project) nodes to the geometry, then fix hex quality by boundary

layers and pillowing. The fundamental shortcoming of snapping is that there is no known way to handle geometry

whose local topology is more rich than the topology of the octree. That is, an octree edge has at most four faces, and

what does one do if the geometry has an edge with five faces? Also nodes are limited to edge-degree six.

Snapping and our approach are fundamentally different. We do not attempt to match the grid topology to the

geometry topology, but instead intersect octree cells with the geometry. This allows us to handle domains with

arbitrary topology in principle.

1.2. Contribution

In this paper, we extend the recently developed cleanup-free all-quad meshing approach in [42] (extended for sharp

corners in [43]), introducing a new direct grid-based algorithm that produces an all-hex mesh without post-processing

cleanup. Conceptually, we follow similar steps to those in [42,43]. Starting with a Cartesian grid or an octree domain

decomposition, we repel the grid points away from the input geometry, intersect each cube with the geometry faces,

use midpoint subdivision to split the intersected elements into hexes, and finally apply 2-refinement templates to
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