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Abstract

We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a

given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These

strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so

far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral

meshes with dihedral angles between 40◦ and 123◦.
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1. Introduction

The two key operations for mesh improving are smoothing (which moves the mesh vertices) and flipping (which

changes mesh topology without moving the mesh vertices). Previous work shows that the combination of these two

operations achieves better results than if applied individually [1,2]. In this paper we combine a new smoothing and a

new flipping methods to one mesh improvement scheme.

Flips are the most efficient ways to locally improve the mesh quality and they have been extensively addressed in the

literature [1–4]. In the most simple cases, the basic flip operations, such as 2-to-3, 3-to-2, and 4-to-4 flips, are applied

as long as the mesh quality can be improved. The more effective way is to combine several basic flip operations, such

as the edge removal operation, which is an extension of the 3-to-2 and 4-to-4 flips. This operation removes an edge

with n ≥ 3 adjacent tetrahedra and replaces them by m = 2n − 4 new tetrahedra (the so-called an n-to-m flip). There are

at most Cn−2 possible cases, where Cn =
(2n)!

(n+1)! n!
is the Catalan number. If n is small (e.g., n < 7), one can enumerate all

the possible cases, compute the mesh quality for each of the individual cases, and then pick the optimal one. Another

way is to use the dynamic programming to find the optimal configuration. However, the number of cases increases

exponentially and finding the optimal solution with brute force is very time-consuming.
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In this paper, we propose the so-called lazy searching flips. The key idea is to automatically explore sequences of

flips in order to remove a given edge in the mesh. If a sequence of flips leads to a configuration which doesn’t improve

the mesh quality, the algorithm reverses this sequence and explores another one (see section 3 and Figs 1a to 1c). Once

an improvement is found, the algorithms stops the search and returns without exploring the remaining possibilities.

The lazy searching flips are accompanied with a smoothing procedure. Mesh smoothing improves the mesh quality

by improving vertex locations, typically through Laplacian smoothing or some optimization-based algorithms. Most

commonly used mesh smoothing methods are Laplacian smoothing and its variants [5,6], where a vertex is moved to

the geometric center of its neighboring vertices. While economic, easy to implement, and often effective, Laplacian

smoothing guarantees neither a mesh quality improvement nor the mesh validity.

Alternatives are optimization-based methods that are effective for a variety of mesh quality measures, e.g., for

the ratio of the area to the sum of the squared edge lengths [7] or the ratio of the volume to a power of the sum of

the squared face areas [8], the condition number of the Jacobian matrix of the affine mapping between the reference

element and physical elements [9], or various other measures [1,10–12]. Most of the optimization-based methods are

local and sequential, with Gauss-Seidel-type iterations being combined with location optimization problems over each

patch. There is also a parallel algorithm that solves a sequence of independent subproblems [13].

In our scheme, we employ the moving mesh PDE (MMPDE) method, defined as the gradient flow equation of a

meshing functional (an objective functional in the context of optimization) to move the mesh continuously in time.

Such a functional is typically based on error estimation or physical and geometric considerations. Here, we consider

a functional based on the equidistribution and alignment conditions [14] and employ the recently developed direct

geometric discretization [15] of the underlying meshing functional on simplicial meshes.

Compared to the aforementioned mesh smoothing methods, the considered method has several advantages: it can be

easily parallelized, it is based on a continuous functional for which the existence of minimizers is known, the functional

controlling the mesh shape and size has a clear geometric meaning, and the nodal mesh velocities are given by a simple

analytical matrix form. Moreover, the smoothed mesh will stay valid if it was valid initially [20].

In this paper we provide a detailed numerical study of a combination of the lazy searching flips with the MMPDE

smoothing. More specifically, we compare the results of the whole algorithm with Stellar [2], CGAL [16] and

mmg3d [17]. We also compare the lazy searching flips and the MMPDE smoothing with the flipping and smoothing

procedures provided by Stellar.

2. The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is to move the mesh vertices via a moving mesh equation, which is formulated

as the gradient system of an energy function (the MMPDE approach). Originally, the method was developed in the

continuous form [18,19]. In this paper, we use its discrete form [15,20,21], for which the mesh vertex velocities are

expressed in a simple, analytical matrix form, which makes the implementation more straightforward to parallelize.

2.1. Moving mesh smoothing

Consider a polygonal (polyhedral) domain Ω ⊂ Rd, d ≥ 1, let the simplicial mesh under consideration be Th, and

denote the numbers of its vertices and elements by #Nh and #Th. Let K be a generic mesh element and K̂ the reference

element taken as a regular simplex with the volume |K̂| = 1/#Th. Further, let F′K be the Jacobian matrix of the affine

mapping FK : K̂ → K from the reference element K̂ to a mesh element K. For notational simplicity, we denote the

inverse of the Jacobia by JK , i.e., JK ≡ (F′K)−1. Then, the mesh Th is uniform if and only if

|K| =
|Ω|
#Th

and
1

d
tr
(
J

T
KJK

)
= det

(
J

T
KJK

) 1
d ∀K ∈ Th. (1)

The first condition requires all elements to have the same size and the second requires all elements to be shaped

similarly to K̂ (these conditions are the simplified versions of the equidistribution and alignment conditions [19,22]).

The corresponding energy function for which the minimization will result in a mesh satisfying (1) as closely as

possible is
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