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Abstract 

The solution of the motion equation of the rigid body systems with higher degrees of freedom 2 ≤ p° ≤ 10 is difficult. The 
presented method allows solving the motion equations of such systems by its transformation to higher degrees’ algebraic 
characteristic equations. The vibration of the system is then described by frequencies obtained from solution of characteristic 
equations. The proposed method follows Bezout’s factor theorem, Bairstow-Hitchcock’s method, method of synthetic division 
and other presuppositions given in the article. The solution is based on the determination of the complex zeros of polynomials. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of MMS 2016. 
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1. Introduction 

The equations of motion are fundamental of investigation, which are aimed to vibration of the rigid bodies that 
could be resiliently supported and coupled, even with dissipative elements. The basic models of road and railway 
vehicles and some simple-operational machines, etc. are presented as examples of rigid bodies systems with lower 
degrees of freedom p ≤ 10 approximately. We assume linear coupling of elastic even dissipative elements and 
small changes of displacement of system bodies. Then we arise to the system of ordinary second order differential 
linear inhomogeneous equations with constant coefficients, which could be written in matrix form as: 

for non-damped vibration 
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for damped vibration respectively 
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where M is mass (inertia) matrix of the system, K is stiffness matrix, B is damping matrix, F(t) is vector of 
generalized excitation function and y(t) is vector of generalized coordinate. The analytical solution could be 
obtained by Lagrange method of constant variation or by application of integral transformation for low range 
system. When we applied Laplace’s integral transformation for reverse image transformation (using convolution) it 
is necessary to determine the zeros of frequency polynomial: 

for non-damped vibration from (1) 
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for damped vibration from (2) 
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i.e., to determine roots of frequency characteristic algebraic n = 2p order equation 
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The real positive coefficients of polynomial (3) and (4) defined also by equation (5), an-j and bn-j are the functions 
of matrix elements M and K, or M, B, K respectively. We consider standardized form of the frequency equations 
which means an = 1, bn = 1. At first we determine the roots of the equations (5) by analytical solution of equation 
system (1) and (2). The extensive collection of approximate and numerical solution method of algebraic high order 
equations exists [6].  

The specific properties of polynomial for vibration of mechanical systems of rigid bodies influence the choice of 
any suitable methods. 

1) Polynomial (3) and (4), or equations (5) are of even order n = 2p°, where only even exponents of variable x 
are non-zero in equations for non-damped vibration and coefficients of odd exponents are generally equal 
to zero. The coefficients of even and odd variable exponents are generally non-zero for damping vibration.  

2) The coefficients have explicit relation with each other in equations (5): the coefficients of polynomial (3) 
are components of coefficients of polynomial (4) see [1].  

3)  The roots of frequency equation are purely imaginary conjugated for non-damped vibration. 
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The roots of frequency equation are complex conjugated for damped vibration, 
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where 0 is inherent circular frequency of non-damping vibration, j is inherent circular frequency with viscous 
linear damping less than critical, j is damping constant. The relation of these variables could be  expressed: 
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We assumed only the simple roots xk of equations (5) for .0kk xfxx   
4)  The products of rooted factor of conjugated roots according to (6), (7) and (8) define quadratic polynomial 

 for non-damped vibration. 
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