FISHVIER

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Efficient and eco-compatible transition metal-free Oppenauer-type oxidation of alcohols

Jorge Ballester ^{a,1}, Anne-Marie Caminade ^{b,c,2}, Jean-Pierre Majoral ^{b,c,2}, Marc Taillefer ^{a,*,2}, Armelle Ouali ^{b,c,*,1}

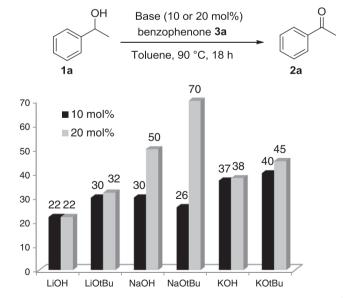
- ^a CNRS, UMR 5253, ICG, AM₂N, ENSCM, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
- ^b Laboratoire de Chimie de Coordination CNRS UPR 8241, BP 44099, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
- ^c Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France

ARTICLE INFO

Article history: Received 6 November 2013 Received in revised form 25 December 2013 Accepted 27 December 2013 Available online 4 January 2014

Keywords: Alcohol Oxidation Oppenauer Sodium tert-butoxide Ketone Catalysis

ABSTRACT


Catalytic amounts of cheap, non-toxic, easy-to-handle and non-sensitive sodium tert-butoxide are able to promote the dehydrogenative oxidation of a wide array of secondary alcohols using inexpensive benzophenone as the H-acceptor. The corresponding ketones, highly important intermediates and targets throughout life and material sciences, are very selectively obtained under mild conditions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The oxidation of alcohols to their corresponding carbonyl compounds constitutes a very important reaction in organic synthesis [1]. Classical methods involve stoichiometric amounts of chromium [2] or manganese oxides [3], and activated DMSO [4] or hypervalent iodine derivatives [5]. Most of these oxidants are difficult-to-handle, hazardous and the high amounts of wastes produced are of environmental concern [2–5]. The search for catalytic, cheap and eco-compatible methods is thus crucial for laboratory- and large-scale processes. Along these lines, transition metal-based systems are able to catalytically promote oxidations of alcohols in the presence of oxygen or peroxides [6-9]. However, these catalysts are generally sophisticated and often expensive. Additionally, oxidations consisting in the hydrogen transfer (H-transfer) from the alcohol to an H-acceptor (e.g. ketone) also constitute attractive methodologies [10-12]. Discovered by Oppenauer in the 1930s, such oxidations initially involved stoichiometric amounts of aluminum or alkali alkoxides [10–14]. Afterwards, lanthanides [11] and transition metals (ruthenium [15–17], iridium

^{[18–20],} iron [21–24]) were found to achieve Oppenauer-type oxidations catalytically. Besides, we and others recently reported that catalytic amounts of alkali hydroxides and alkoxides were able

Fig. 1. Oxidation of **1a** into **2a** catalyzed by various alkali bases: yields of **2a** (%)^{a,b} (^abase (0.1 or 0.2 mmol), **1** (1 mmol), **3a** (2 mmol), toluene (2 mL); ^bconversions of **1a** determined by ¹H NMR with 1,3-dimethoxybenzene as standard (selectivities >98%)).

^{*} Corresponding authors.

E-mail addresses: marc.taillefer@enscm.fr (M. Taillefer), armelle.ouali@lcc-toulouse.fr (A. Ouali).

¹ Tel.: +33 467 144 352; fax: +33 467 144 319.

² Tel.: +33 561 333 134; fax: +33 561 553 003.

Table 1Oxidation of **1a** into **2a** via H-transfer in the presence of NaOtBu in various solvents. a.b.

	Solvent	Conversions of 1a (%) ^b
1	DMSO ^c	37
2	Acetonitrile ^c	40
3	Dioxane	43
4	Dichloromethane	47
5	THF	50
6	Toluene	70

^a 1a (1 mmol), NaOtBu (0.2 mmol), 3a (2 mmol), solvent (2 mL).

to promote the reverse Meerwein–Ponndorf–Verley reduction of ketones using alcohols as H-donors [25–29]. Hence this paper reports the route to cheap and non-toxic alkali-based catalytic systems for the complementary Oppenauer-type oxidation of alcohols [10–12,30,31]. These results have been patented [26].

2. Experimental

2.1. Materials and instruments

Reactants were purchased from commercial sources and used without purification. NaOtBu (99.9%, Aldrich and 97%, Alfa Aesar), KOtBu (99.99%, Aldrich), LiOtBu (99.9%, Alfa Aesar), NaOH (99.99%, Aldrich),

KOH (99.99%, Aldrich), and LiOH (99.9%, Alfa Aesar), were carefully ground to a fine powder before use. Column chromatography was performed with SDS 60 Å C.C. silica gel and thin layer chromatography using Merck silica gel 60 F_{254} plates. NMR spectra were recorded on a Bruker 400 spectrometer and GC/MS on an Agilent 6890N instrument.

2.2. General procedures for the oxidation of alcohols with NaOtBu

A Radley tube (Carousel RR98030) with a magnetic stirring bar was charged with NaOtBu (Aldrich (99.9%) and Alfa Aesar (97%), 0.2 mmol), benzophenone (2 mmol), alcohol (1 mmol) and toluene (2 mL). The tube was closed, stirred and heated. After cooling, dichloromethane

Table 2Oxidation of **1a** into **2a** via H-transfer in the presence of different H-acceptors. ^a

	H-acceptor	Conversions of 1a (%) ^b
1	4	2
2	4 ^c	10
3	5	35
4	6	$20^{ m d}$
5	3b	26
6	3c	55
7	3d	70
8	3e	85

^a 1a (1 mmol), NaOtBu (0.2 mmol), H-acceptor (2 mmol), toluene (2 mL).

^b Determined by ¹H NMR with 1,3-dimethoxybenzene as standard (selectivities > 99%).

^c Side aldol condensation and crotonization. Selectivities: in DMSO: 50%; and in acetonitrile: 70%.

b Determined by ¹H NMR with 1,3-dimethoxybenzene as standard (selectivities > 99%).

^c **4** used as the solvent.

 $^{^{}m d}$ Aldol condensation between ${f 2a}$ and ${f 6}$ (selectivity: 60%).

Download English Version:

https://daneshyari.com/en/article/50301

Download Persian Version:

https://daneshyari.com/article/50301

<u>Daneshyari.com</u>