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The isotropic quantum Heisenberg model with alternating uniaxial anisotropy axes is analyzed numeri-
cally by the density-matrix renormalization-group (DMRG) method. In the classical version, the model
is applied to describe the magnetic properties of the S = 2 zigzag chain containing Mn(III) acetate
meso-tetraphenylporphyrin complexes coupled by the phenylphosphinate ligands which transmit anti-
ferromagnetic interactions. Although the tensors representing the uniaxial magnetic anisotropy D and g
factors are non-diagonal in the global coordination system, the DMRG approach has been successfully
applied to this complex model in the entire temperature region studied. The predictions of our quantum
approach are compared to those previously obtained from the classical one and the importance of quan-
tum effects for analysis of the single-crystal susceptibility and magnetization is demonstrated. At low
temperatures the magnetization in the field applied along the c direction increases much more slowly
than the classical counterpart. The magnetization behavior is very sensitive to temperature. Moreover,
the presence of a magnetization jump in the limit T → 0 at the field H = 3.8 Tesla can be an indication
of the Haldane gap of the order of 10.2 K. The considerable differences are demonstrated for the temper-
ature dependent single-crystal susceptibilities, but surprisingly they disappear after averaging over the
three crystallographic directions which has not been reported before.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A new class of nanomagnets, the so-called single-chain mag-
nets (SCM), has aroused great interest because of their unique
properties [1]. These materials are composed of magnetically iso-
lated chains that can be individually magnetized. As purely one-
dimensional systems they remain in the paramagnetic state at
any temperature. Nevertheless, a combination of a large uniaxial
anisotropy and large magnetic interactions between the high-spin
magnetic units of the chain promotes long relaxation times and
the system can behave as a magnet. Although the SCM materials
synthesized hitherto manifest long relaxation times at low tem-
peratures only, various attempts are carried out to remove these
limitations. The point is that SCM behavior is not only a feature
of ferro- and ferrimagnetics but also of canted antiferromagnetic
chains [2]. Moreover, noncollinear anisotropy axes are often found
in molecular systems.

The SCM materials are studied theoretically under the assump-
tion that the spins are treated in the classical approximation, tak-
ing into account the Ising limit or replacing the spin operators
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by classical vectors. The latter approach has been adopted [2] for
analysis of the SCM compound made of aligned acetate meso-
tetraphenylporphyrin complexes of the formula [Mn(TPP)O2PHPh]-
H2O. At first sight it seems justified to consider the classical limit
for the Heisenberg model for the spin S = 2 and temperatures not
too low when compared with the weak magnetic coupling con-
stant J/kB (in our units equal to 1.36 K).

This study was undertaken to address the following questions.
(a) As the crossover temperature separating the quantum and clas-
sical behavior for a given Heisenberg model is unknown, is the
assumption of total neglect the role of the quantum effects correct
or too far-reaching?; (b) Is the antiferromagnetic S = 2 Heisen-
berg model with noncollinear anisotropy axes a good realization
of the Haldane-gap system? Both these questions have not been
discussed in the previous paper [2].

So far we have considered the quantum chains [3,4] with rather
weak exchange coupling and weak/moderate uniaxial anisotropy
with the unique orientation of the easy axis. The analysis based
on the DMRG approach has led to significant improvement as far
as the modeling of the thermodynamic properties is concerned.
In this paper we extend the approach over the model with the
anisotropy axes not only tilted from the z direction but also alter-
nating from site to site along the chain.
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2. Model

The [Mn(TPP)O2PHPh]H2O compound represents systems com-
prising only one type of spin and one type of exchange interaction,
which allows simulation of static and dynamic properties of the
system in the whole range of temperatures studied with the use
of one model [2]. This compound is considered as the textbook ex-
ample of SCM. The chain structure is generated by a glide plane
resulting in Jahn–Teller elongation axes of the Mn(III) octahedra
that alternate along the chain.

Therefore the uniaxial magnetic anisotropy D and g factors en-
ter the model Hamiltonian as the non-diagonal tensors which lead
to the following formula:

H =
L∑

i=1

[∑
α

J Sα
i Sα

i+1 +
∑
β,γ

(
Sβ

i Dβγ
i Sγ

i + μB Hβ gβγ Sγ
i

)]
,

where S = 2 and L stands for the length of the chain.
The anisotropy tensor Dβγ and the gβγ factor, where α,β,γ =

x, y, z, have been found to be non-diagonal according to the fol-
lowing analysis. It is known [5] that there is such a local system of
coordinates, where the Dβγ tensor has only non-zero elements on
the diagonal (Dxy, Dxy, Dzz). At the same time by subtracting and
adding the unit matrix multiplied by the factor Tr(Dβγ )/3 one gets
the traceless tensor, again only with non-zero diagonal elements
(D⊥, D⊥, Dz). After elementary modifications it can be presented
in the diagonal form: (0,0, Dz). Moreover, the local system of co-
ordinates guarantees that the gβγ tensor has a diagonal form with
elements (g⊥, g⊥, gz).

In order to transform the Hamiltonian from the local coordi-
nates to the lab ones the following similarity transformation is
necessary: Hlab = R(φ)R(θ)H′

loc R(θ)−1 R(φ)−1.
Then both tensors Dβγ and gβγ take the final form:

D = Dz

⎛
⎝ cos2 φ sin2 θ − cosφ sinφ sin2 θ . . .

− cosφ sinφ sin2 θ cos2 φ sin2 θ . . .

− cosφ sin θ cos θ sinφ sin θ cos θ . . .

. . . − cos φ sin θ cos θ

. . . sinφ sin θ cos θ

. . . cos2 θ

⎞
⎠ .

g =
⎛
⎝ g⊥ cos2 θ cos2 φ + gz cos2 φ sin2 θ + g⊥ sin2 φ . . .

(g⊥ − gz) cos φ sin2 θ sinφ . . .

(g⊥ − gz) cos θ cosφ sin θ . . .

. . . (g⊥ − gz) cosφ sin2 θ sinφ . . .

. . . g⊥ cos2 φ + (g⊥ cos2 θ + gz sin2 θ) sin2 φ . . .

. . . (−g⊥ + gz) cos θ sin θ sinφ . . .

. . . (g⊥ − gz) cos θ cosφ sin θ

. . . (−g⊥ + gz) cos θ sin θ sinφ

. . . gz cos2 θ + g⊥ sin2 θ

⎞
⎠ .

The transformation angles (φ, θ ) were taken from the data pre-
sented in [2]. The non-diagonal tensors demand using the complex
matrix representation of the model Hamiltonian which leads to
higher computational complexity with respect to our previous pa-
pers [3,4].

3. Simulation method

Originally the density-matrix renormalization group method
(DMRG) has been proposed by White for the ground-state calcu-
lations of quantum spin chains [6]. A key problem is to find in a
subspace of a given size, much smaller than the original configura-
tion space, optimal basis states in which the Hamiltonian could be

expressed. Starting with a small system for which Hamiltonian can
be exactly diagonalized, one adds iteratively couples of spins un-
til the allowed (in the computational sense) size is reached. Then
further addition of new spins makes one to discard simultaneously
the least important states to keep the size of the effective Hamil-
tonian fixed. This truncation is done through the construction of
a reduced density matrix whose eigenstates provide the optimal
basis set.

Nishino applied the DMRG idea to truncation of transfer ma-
trices [7] for 2d strips at finite temperature. It is not surprising,
since a quantum system in d dimensions can be mapped onto an-
other classical system in d + 1 [8]. Nishino’s formulation of the
DMRG for two-dimensional classical systems has paved the way for
the study of one-dimensional quantum systems at non-zero tem-
perature [9]. The starting point was the quantum transfer matrix
method (QTM) which had been earlier proposed to study ther-
modynamic properties of quantum spin chains [10–12]. By means
of the Trotter–Suzuki decomposition, the partition function of the
chain is mapped onto the partition function of the classical 2d
system with multi-spin interactions. The partition function of the
classical system takes the form of a series of approximants ZM ,
where M is called the Trotter number. The higher M , the greater is
taken into account quantum nature of the problem. As the dimen-
sion of QTM exponentially increases with increasing Trotter num-
ber computations of Z M are feasible for relatively small M which
can prevent reliable estimations of the thermodynamic functions
in a low-temperature region (see references in [12–14]). To over-
come this restriction and cover the entire experimental tempera-
ture range, the DMRG approach has been applied [15–18].

In the zero-temperature DMRG method, we extend the quan-
tum Hamiltonian in the real space direction, where the number
of basis states is reduced by using the eigenvectors of the den-
sity matrix calculated from the ground-state wave function. In the
finite-temperature DMRG method, we extend the transfer matrix
in the Trotter direction by restricting the basis states using the
density matrix calculated from the transfer matrix eigenvector re-
lated to the maximum eigenvalue λmax [18]. Contrary to the zero-
temperature DMRG method, the transfer matrices to be diagonal-
ized are asymmetric here due to the checkerboard decomposition.

The non-Hermiticity of the transfer matrix and the correspond-
ing density matrices which are constructed from the right and left
eigenvectors of the largest eigenvalue of transfer matrix, can result
in significant numerical instabilities. It can spoil substantially the
convergence of results. This is particularly important when calcula-
tions are performed with real algebra. For example, the lack of the
biorthogonality between the left and right eigenvectors may affect
the density matrix and substantially increase the truncation error.
Another problem would be caused by degenerate eigenvalues, for
which standard procedures give spurious small imaginary parts.
Usually this problem has been solved by using the real and imag-
inary components of the corresponding complex conjugate eigen-
vector pairs and discarding the imaginary part of the eigenvalues,
which are artifacts of roundoff errors. Fortunately, we were able to
overcome these problems by applying complex algebra [3,4], which
guaranties the biortogonality of complex eigenvectors.

At each temperature, the free energy of the system per site is
obtained from the maximum eigenvalue λmax

f = −kB T lnλmax/2.

Various thermodynamical quantities as the internal energy, en-
tropy, specific heat or magnetic susceptibility can be obtained by
taking adequate derivatives of the free energy with respect to tem-
perature or magnetic field.
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