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Abstract

The maximal Lyapunov exponent of a nonsmooth system is the lower bound for the proportional feedback gain necessary to achieve

full state synchronization. In this paper, we prove this statement for the general class of nonsmooth systems in the framework of

measure differential inclusions. The results are used to estimate the maximal Lyapunov exponent using chaos synchronization,

which is illustrated on an impact oscillator.
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1. Introduction

The spectrum of Lyapunov exponents is an important characteristic of limit sets. It measures the exponential

convergence or divergence of nearby trajectories, thereby capturing the sensitivity of solutions with respect to initial

conditions1. An infinitesimal sphere of perturbed initial conditions will deform into an ellipsoid under the flow of

a smooth dynamical system2. The Lyapunov exponents capture the average exponential growth or decay rate of the

principal axes of the ellipsoid and the maximal Lyapunov exponent captures the long-term behavior of the dominating

direction. A positive maximal Lyapunov exponent implies instability of the limit set (i.e., equilibrium, limit cycle,

periodic or quasi-periodic solution) or it can be an indication for a chaotic attractor3,4.

The existence of the Lyapunov exponents is a subtle question for non-conservative systems5,6. The mathematic

foundation for the existence is given by the multiplicative ergodic theorem of Oseledec7,8. It states that, if there exists

an invariant measure of the flow, then the Lyapunov exponents exist for almost every point w.r.t. that measure.

Algorithms to find the spectrum of Lyapunov exponents of smooth systems are well established9–11. The spectrum

can be computed numerically by linearizing the differential equations along the nominal solution. Time integration of

the linearized equations yields the fundamental solution matrix from which the spectrum can be obtained. Lyapunov

exponents can also be obtained from experimental time series of systems with unknown dynamics12–15.
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Dynamical systems with a discontinuous right-hand side exhibit discontinuities in the evolution of the fundamental

solution matrix. The jumps can be described using a saltation matrix16, which has been used for example for the

numerical computation of the Lyapunov exponents with jump conditions including the motion on sliding surfaces17

or for Filippov-type systems with an emphasis on mechanical systems with Coulomb friction18. A model based

algorithm for the calculation of the spectrum of Lyapunov exponents has been developed for dynamical systems with

discontinuous motion19.

Two diffusively coupled identical smooth systems achieve synchronization despite the complicated dynamics of

the individual systems if the coupling parameter is large enough20. The minimal value of the coupling parameter for

which the synchronization set is (attractively) stable is determined by the maximal Lyapunov exponent of the indi-

vidual systems. This relation arises from the competitive behavior of the separation due to the trajectory instability

(dominated by the maximal Lyapunov exponent) and the convergence due to the coupling. Using this relation, the

maximal Lyapunov exponent can be estimated by the critical coupling necessary for synchronization21. The method

of estimating the maximal Lyapunov exponent using chaos synchronization has been considered for nonsmooth sys-

tems22 and for discrete maps23 assuming that the increase of the initial perturbation is uniform in time, which is only

the case for linear time-invariant systems).

In this paper, we consider the class of nonsmooth systems with solutions of special locally bounded variation, which

can be written in the framework of measure differential inclusions24. We prove for this general class of nonsmooth

systems that the critical coupling is indeed given by the maximal Lyapunov exponent as long as it exists. The paper

is organized as follows. We first restrict ourselves to smooth systems in Section 2 before we state the main result for

nonsmooth systems in Section 3. The results are illustrated in Section 4 on an impact oscillator and conclusions are

given in Section 5.

2. Smooth systems

The dynamics of a smooth system is given by

dx
dt
= f (x, t), (1)

where the vector field f : Rn×R→ R
n is continuously differentiable in its first argument and continuous in its second

argument. We denote the solution of (1) for the initial conditions x(t0) = x0 as x(t) = ϕ(t, x0, t0), where the dependence

on initial conditions is written explicitly. We introduce the perturbed solution (x + Δx)(t) = ϕ(t, x0 + κe, t0) obtained

using the perturbed initial conditions x0 + κe with ‖e‖ = 1 and κ > 0 small. The dynamics of the perturbation Δx(t) is

obtained as

d (Δx)

dt
= f (x + Δx, t) − f (x, t) = A(t)Δx + o (‖Δx‖) , (2)

where A(t) :=
∂ f (x,t)
∂x

∣∣∣∣
ϕ(t,x0,t0)

is the linearization of the vector field f along the unperturbed solution and o denotes the

(small) Landau-order symbol. The perturbation Δx tends to zero for κ → 0. Therefore, we introduce the normalized

perturbation ξ(t, e, t0) := limκ→0 ξκ(t, e, t0), where ξκ(t, e, t0) := Δx
‖Δx0‖ =

ϕ(t,x0+κe,t0)−ϕ(t,x0,t0)

κ
. The limit exists because

O (‖Δx‖) = O (‖Δx(t0)‖) = O (κ), where O denotes the (big) Landau-order symbol. Taking the limit κ → 0 of (2),

divided by κ, yields

lim
κ→0

dξκ
dt
= A(t)ξ. (3)

The vector field f is continuously differentiable in its first argument, which implies local uniform convergence

of limκ→0
dξκ
dt . Using Theorem 7.17 of Rudin25 together with (3) yields

dξ

dt
= A(t)ξ. (4)

LetΦ(t, t0) be the fundamental solution matrix, which is the solution to the matrix differential equation dΦ
dt = A(t)Φ for

the initial conditions Φ(t0, t0) = I, where I is the identity matrix. Then, the solution of the normalized perturbation ξ
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