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Abstract

In addition to hydrodynamic equations in the bulk region, proper hydrodynamic boundary conditions are essential to theoretically

understanding and numerically simulating the hydrodynamics of many soft matter systems, e.g. two-phase flows on solid surfaces

and viscoelastic fluids on solid surfaces. In this work, we show that Onsager’s variational principle, first proposed by Lars Onsager

in his seminal work in 1931, provides a convenient instrument for deriving not only hydrodynamic equations in the bulk region

but also thermodynamically consistent hydrodynamic boundary conditions. To demonstrate its applications, we consider one-

component liquid-vapor flows and immiscible two-phase flows on solid surfaces where moving contact line is involved.
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1. Introduction

What happens at the fluid-solid interface has been a classical problem of particular relevance to the study of multi-

phase fluid flows. The moving contact line (MCL) problem has been a classical problem in continuum hydrodynamics

for decades. The contact line denotes the intersection of the fluid-fluid interface with a solid wall. When one fluid

displaces the other, the contact line moves along the wall. It has been well known that the MCL is incompatible

with the no-slip boundary condition — the latter leads to a non-integrable singularity in viscous dissipation6. The

heart of the MCL problem lies in the boundary conditions at the fluid-solid interface. In fact, there has been a lasting

debate over the boundary conditions for a fluid flowing past a solid surface. Recently the Newtonian flows in confined

geometries have received much attention, and numerous experimental efforts have shown that fluid slip occurs at the

solid boundary in many circumstances7,8,9.

Molecular dynamics (MD) simulations have proven to be instrumental in investigating the fluid dynamics of the

MCL. Through analysis of extensive MD data, it was found that the fluid slip measured in nanoscale MD simulations

is governed by the generalized Navier boundary condition (GNBC)11. The GNBC states that the relative slip velocity

between the fluid and the solid wall is proportional to the total tangential stress — the sum of the viscous stress and the

uncompensated Young stress which arises from the deviation of the fluid-fluid interface from its static configuration.
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By combining the GNBC with the Cahn-Hilliard hydrodynamic formulation for immiscible two-phase flows11, a

continuum model for MCL hydrodynamics has been obtained with continuum solutions in quantitative agreement

with MD results11.

In general, boundary conditions are essential to a mathematical description of two-phase flows on solid walls.

It is worth pointing out that the physics associated with boundary conditions can not be simply deduced from that

associated with hydrodynamic equations in the bulk region — the boundary conditions can not be regarded as simply

a routine or conventional mathematical hypothesis associated with the partial differential equations in the bulk region.

Physically, they should be derived from an understanding of the dissipative processes at the fluid-solid interface.

The coexistence of different dissipative processes is a common phenomenon in soft matter with multiple compo-

nents and/or internal degrees of freedom. To describe coupled irreversible processes in the linear response regime,

Onsager formulated a variational principle that is of fundamental importance to macroscopic thermodynamics1,2,3,4,5.

This variational principle is based on a general class of reciprocal relations and provides a reliable and unified ap-

proach to deriving dynamic equations for soft matter12,13,14. Applying this principle, we present a variational approach

to the derivation of hydrodynamic boundary conditions for two-phase flows on solid surfaces where MCL is involved.

The paper is organized as follows. In section 2 there is a brief review of Onsager’s variational principle. As a simple

demonstration, hydrodynamic boundary conditions are derived for single phase flows on solid surfaces in section 3.

We then turn to one-component liquid-vapor flows in section 4 and immiscible two-phase flows in section 5. It is seen

that thermodynamically consistent boundary conditions are derived together with hydrodynamic equations in the bulk

region. The paper is concluded in section 6 with a few remarks.

2. Onsager’s variational principle

For a closed system, consider the fluctuations of a set of (macroscopic) variables αi (i = 1, ..., n) with respect to

their most probable (equilibrium) values1,2,3,4,5. The entropy of the system S has a maximum S e at equilibrium so that

ΔS = S − S e can be written in the quadratic form

ΔS (α1, ..., αn) = −1

2
βi jαiα j, (1)

where β is symmetric and positive definite. Here the Einstein summation convention is used. The probability density is

given by f (α1, ..., αn) = f (0, ..., 0) eΔS/kB , where kB is the Boltzmann constant. The thermodynamic forces conjugate

to αi are defined by

Xi =
∂ΔS
∂αi
= −βi jα j, (2)

which are linear combinations of αi not far from equilibrium.

For small deviation from equilibrium, the system is in the linear response regime, where the state variables

αi (i = 1, ..., n) evolve according to the linear kinetic equations

α̇i = Li jX j, (3)

or equivalently

Xi = Ri jα̇ j, (4)

where the kinetic coefficients Li j form a symmetric and positive definite matrix, and so do the coefficients Ri j, with

Li jR jk = δik. Off-diagonal entries Li j and Ri j are referred to as cross-coupling coefficients between different irreversible

processes labeled by i and j. Under the condition that the variables α are even, i.e., their signs remain invariant under

time reversal operation, Onsager derived the reciprocal relations

Li j = Lji, (5)

and consequently Ri j = Rji, from the microscopic reversibility1,3, which does not require detailed knowledge of the

irreversible processes.
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