

Available online at www.sciencedirect.com

Procedia IUTAM

Procedia IUTAM 21 (2017) 48 - 55

www.elsevier.com/locate/procedia

2016 IUTAM Symposium on Nanoscale Physical Mechanics

A Non-Classical Model for Circular Mindlin Plates Incorporating Microstructure and Surface Energy Effects

G. Y. Zhang^a, X.-L. Gao^{a,*}, S. Tang^b

^aDepartment of Mechanical Engineering, Southern Methodist University, P. O. Box 750337, Dallas, TX 75275-0337, USA ^bDepartment of Engineering Mechanics, Chongqing University, Chongqing 400044, China

Abstract

A new non-classical model for circular Mindlin plates is developed using a modified couple stress theory, a surface elasticity theory and Hamilton's principle. The equations of motion and boundary conditions are simultaneously obtained through a variational formulation, and the microstructure and surface energy effects are treated in a unified manner. The new plate model contains a material length scale parameter to account for the microstructure effect and three surface elasticity constants to describe the surface energy effect. The current non-classical model includes the plate models considering the microstructure influence only and the surface energy effect alone as special cases, and it recovers the classical elasticity-based circular Mindlin plate model when both the microstructure and surface energy effects are suppressed. To illustrate the new model, the static bending problem of a clamped circular Mindlin plate under a uniform normal load is analytically solved by directly applying the general formulas derived.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of organizing committee of Institute of the 2016 IUTAM Symposium on Nanoscale Physical Mechanics

Keywords: Mindlin plate; size effect; couple stress theory; surface elasticity; Hamilton's principle; plate theory.

1. Introduction

Thin plates have been widely used in microelectromechanical systems and other industrial sectors. It has been experimentally observed that such plates exhibit microstructure-dependent size effects at the micron scale¹, which

^{*} Corresponding author. Tel: +1-214-768-1378; fax: +1-214-768-1473. *E-mail address:* xlgao@smu.edu

cannot be explained using classical elasticity due to the lack of any material length scale parameter. Hence, efforts have been made to develop non-classical plate models based on higher-order elasticity and surface elasticity theories.

Lazopoulos² provided a non-classical von Karman plate model based on a simplified strain gradient elasticity theory (SSGET)³. This SSGET was also employed by Papargyri-Beskou et al.⁴ to derive non-classical governing equations for Kirchhoff plates. By using a constitutive relation in non-local elasticity suggested in Eringen⁵, Lu et al.⁶ proposed a Kirchhoff plate model and a Mindlin plate model without using a variational formulation. Reddy and Berry⁷ studied axisymmetric bending of functionally graded circular plates employing a modified couple stress theory^{8,9}. Recently, three models for Mindlin plates and third-order shear deformation plates have been developed by Ma et al.¹⁰, Gao et al.¹¹ and Zhou and Gao¹² using the modified couple stress theory and Hamilton's principle.

The surface elasticity theory¹³⁻¹⁷ has also been applied to develop non-classical models for thin plates involving surface energy effects. Lim and He¹⁸ presented a geometrically nonlinear plate model for nano-scale films based on the Kirchhoff hypothesis and the von Karman strains. Lu et al.¹⁹ constructed a size-dependent thin plate model by including the normal stress on and inside the surface of the bulk substrate. Wang and Wang²⁰ provided a model for non-linear free vibrations of a Kirchhoff plate and a Mindlin plate using the von Karman strains. Liu and Rajapakse²¹ published a size-dependent continuum model for thin and thick circular plates.

However, very few models have been developed for thin plates by considering both the microstructure and surface energy effects. A non-classical Kirchhoff plate model, which is based on a modified couple stress theory and a surface elasticity theory, was presented in Shaat et al.²² without using a variational formulation. Recently, non-classical models for Kirchhoff plates were developed by Zhang et al.²³ and Gao and Zhang²⁴ utilizing a variational formulation, a modified couple stress theory and a surface elasticity theory.

In the current paper, a non-classical model for circular Mindlin plates is provided by using the modified couple stress theory^{8,9}, the surface elasticity theory^{13,14}, and Hamilton's principle.

2. Formulation

Consider a flat thin circular plate of inner radius *a*, outer radius *b* and uniform thickness *h*, as shown in Fig. 1, where the cylindrical coordinate system (r, θ, z) is adopted, with the *r* θ -plane being coincident with the geometrical mid-plane of the undeformed plate.

According to the Mindlin plate theory, the displacement field in a thin circular plate undergoing axisymmetric deformations can be written as^{12,25}

$$u_{r}(r,\theta,z,t) = u(r,t) - z\phi_{r}(r,t), \quad u_{\theta}(r,\theta,z,t) = 0, \quad u_{z}(r,\theta,z,t) = w(r,t),$$
(1a-c)

where u_r , u_θ and u_z are, respectively, the radial, tangential and transverse components of the displacement vector **u** of a point (r, θ, z) in the plate at time *t*, *u* and *w* are, respectively, the radial and transverse components of the displacement vector of the corresponding point $(r, \theta, 0)$ on the plate mid-plane at time *t*, and ϕ_r is the rotation angle of a transverse normal line about the \mathbf{e}_θ direction (see Fig. 1).

In Fig. 1, S^+ and S^- denote, respectively, the upper and lower surface layers of the circular Mindlin plate. These two zero-thickness surface layers are perfectly bonded to the bulk plate material at $z = \pm h/2$ and have distinct properties from the bulk material. The bulk material satisfies the modified couple stress theory^{8,9}, while the surface layers are governed by the surface elasticity theory^{13,14}.

According to the modified couple stress theory^{8,9},

$$\boldsymbol{\sigma} = \lambda \operatorname{tr}(\boldsymbol{\varepsilon})\mathbf{I} + 2\mu\boldsymbol{\varepsilon}, \quad \mathbf{m} = 2\mu l^2 \boldsymbol{\chi}, \tag{2a,b}$$

$$\boldsymbol{\varepsilon} = \frac{1}{2} [\nabla \mathbf{u} + (\nabla \mathbf{u})^T], \quad \boldsymbol{\chi} = \frac{1}{2} [\nabla \boldsymbol{\psi} + (\nabla \boldsymbol{\psi})^T], \quad (3a,b)$$

where σ is the Cauchy stress tensor, **m** is the deviatoric part of the couple stress tensor, **I** is the second-order identity tensor, λ and μ are the Lamé constants in classical elasticity, *l* is a material length scale parameter measuring the couple stress effect^{26,27}, ε is the infinitesimal strain tensor, χ is the symmetric curvature tensor, ∇ denotes the gradient, the superscript *T* represents the transpose, **u** is the displacement vector, and ψ is the rotation vector defined by

$$\boldsymbol{\Psi} = \frac{1}{2} curl \boldsymbol{\mathbf{u}} \cdot \tag{4}$$

Download English Version:

https://daneshyari.com/en/article/5030612

Download Persian Version:

https://daneshyari.com/article/5030612

Daneshyari.com