Author's Accepted Manuscript

Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures

Yang Zang, Jianping Lei, Huangxian Ju

www.elsevier.com/locate/bios

PII: S0956-5663(17)30277-4

DOI: http://dx.doi.org/10.1016/j.bios.2017.04.030

Reference: BIOS9691

To appear in: Biosensors and Bioelectronic

Received date: 24 January 2017 Revised date: 5 April 2017 Accepted date: 21 April 2017

Cite this article as: Yang Zang, Jianping Lei and Huangxian Ju, Principles and applications of photoelectrochemical sensing strategies based of biofunctionalized nanostructures, *Biosensors and Bioelectronic* http://dx.doi.org/10.1016/j.bios.2017.04.030

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures

Yang Zang, Jianping Lei*, Huangxian Ju

State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China

*Corresponding author. Tel./Fax: +86 25 89681922. jpl@nju.edu.cn

Abstract

AUSCHIR Photoelectrochemical (PEC) biosensing is a popular research hotspot that has attracted substantial attention from chemists and biologists due to its low cost and desirable sensitivity. The PEC biosensing mainly refers to the influence of the interaction between recognition element and analyte on photocurrent signal, which involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Understanding the fundamentals of PEC strategy benefits the development of next-generation PEC sensors. However, the research on detection mechanism of PEC sensors is in the initial stage and need to be further exploited. Thus, with a particular focus on the signal transduction formats, this review highlights the novel concept on PEC sensing strategies, and categorizes the recent illustrative examples into three signaling principles: reactant determinant, electron transfer and energy transfer, providing the comprehensive design guidelines for researchers to develop more advanced PEC sensors. The prospects and challenges for future work are also included.

Download English Version:

https://daneshyari.com/en/article/5030831

Download Persian Version:

https://daneshyari.com/article/5030831

<u>Daneshyari.com</u>