Author's Accepted Manuscript

Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions

Shima Gholizadeh, Mohamed Draz, Maryam Zarghooni, Amir Sanati Nezhad, Saeid Ghavami, Hadi Shafiee, Mohsen Akbari

www.elsevier.com/locate/bios

PII: S0956-5663(16)31312-4

DOI: http://dx.doi.org/10.1016/j.bios.2016.12.062

Reference: BIOS9455

To appear in: Biosensors and Bioelectronic

Received date: 23 October 2016 Revised date: 14 December 2016 Accepted date: 29 December 2016

Cite this article as: Shima Gholizadeh, Mohamed Draz, Maryam Zarghooni Amir Sanati Nezhad, Saeid Ghavami, Hadi Shafiee and Mohsen Akbari Microfluidic Approaches for Isolation, Detection, and Characterization o Extracellular Vesicles: Current Status and Future Directions, *Biosensors an Bioelectronic*, http://dx.doi.org/10.1016/j.bios.2016.12.062

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Microfluidic Approaches for Isolation, Detection, and Characterization of

Extracellular Vesicles: Current Status and Future Directions

Shima Gholizadeh¹, Mohamed Draz², Maryam Zarghooni³, Amir Sanati Nezhad⁴, Saeid Ghavami, Hadi Shafiee², Mohsen Akbari^{5,6,7*}

¹Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands

²Division of Biomedical Engineering, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA.

³Department of Physiology, University of Manitoba, Manitoba, Canada.

⁴Department of Mechanical and Biomedical Engineering University of Calgary, Canada.

⁵Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 2C5, Canada.

⁶Center for Biomedical Research, University of Victoria, Victoria, Canada.

⁷Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada.

*Corresponding Author: Prof. Mohsen Akbari (<u>makbari@uvic.ca</u>)

Abstract:

Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise

Download English Version:

https://daneshyari.com/en/article/5031121

Download Persian Version:

https://daneshyari.com/article/5031121

<u>Daneshyari.com</u>