Author's Accepted Manuscript

Fe₃O₄ Nanoparticles on Graphene Oxide Sheets for Isolation and Ultrasensitive Amperometric Detection of Cancer Biomarker Proteins

Mohamed Sharafeldin, Gregory W. Bishop, Snehasis Bhakta, Abdelhamid El-Sawy, Steven L. Suib, James F. Rusling

www.elsevier.com/locate/bios

PII: S0956-5663(16)31303-3

DOI: http://dx.doi.org/10.1016/j.bios.2016.12.052

Reference: BIOS9445

To appear in: Biosensors and Bioelectronic

Received date: 9 November 2016 Revised date: 21 December 2016 Accepted date: 22 December 2016

Cite this article as: Mohamed Sharafeldin, Gregory W. Bishop, Snehasis Bhakta Abdelhamid El-Sawy, Steven L. Suib and James F. Rusling, Fe₃O Nanoparticles on Graphene Oxide Sheets for Isolation and Ultrasensitiv Amperometric Detection of Cancer Biomarker Proteins, *Biosensors an Bioelectronic*, http://dx.doi.org/10.1016/j.bios.2016.12.052

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Fe₃O₄ Nanoparticles on Graphene Oxide Sheets for Isolation and Ultrasensitive Amperometric Detection of Cancer Biomarker Proteins

Mohamed Sharafeldin^{a,b}, Gregory W. Bishop^{a,1}, Snehasis Bhakta^a, Abdelhamid El-Sawy^{a,f}, Steven L. Suib^{a,c}, James F. Rusling^{a,c,d,e*}

^aDepartment of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA

^bAnalytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zakazik, Sharkia, Egypt

^cInstitute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, USA.

^dDepartment of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06032, USA

^eSchool of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland ^fChemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

James.Rusling@Uconn.edu

Abstract

Ultrasensitive mediator-free electrochemical detection for biomarker proteins was achieved at low cost using a novel composite of Fe₃O₄ nanoparticles loaded onto graphene oxide (GO) nanosheets (Fe₃O₄@GO). This paramagnetic Fe₃O₄@GO composite (1 µm size range) was decorated with. antibodies against prostate specific antigen (PSA) and prostate specific membrane antigen (PSMA), and then used to first capture these biomarkers and then deliver them to an 8-sensor detection chamber of a microfluidic immunoarray. Screen-printed carbon sensors coated with electrochemically reduced graphene oxide (ERGO) and a second set of antibodies selectively capture the biomarker-laden Fe₃O₄@GO particles, which subsequently catalyze hydrogen peroxide reduction

Download English Version:

https://daneshyari.com/en/article/5031171

Download Persian Version:

https://daneshyari.com/article/5031171

<u>Daneshyari.com</u>