Author's Accepted Manuscript

Electrochemical sandwich-type biosensors for α -1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles

Gangbing Zhu, Hye Jin Lee

www.elsevier.com/locate/bios

PII: S0956-5663(16)30965-4

DOI: http://dx.doi.org/10.1016/j.bios.2016.09.080

Reference: BIOS9192

To appear in: Biosensors and Bioelectronic

Received date: 25 July 2016 Revised date: 9 September 2016 Accepted date: 23 September 2016

Cite this article as: Gangbing Zhu and Hye Jin Lee, Electrochemical sandwich type biosensors for $\alpha-1$ antitrypsin with carbon nanotubes and alkalin phosphatase labeled antibody-silver nanoparticles, *Biosensors and Bioelectronic* http://dx.doi.org/10.1016/j.bios.2016.09.080

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles

Gangbing Zhu, a,b* Hye Jin Lee a*

Abstract

A novel sandwich-type biosensor was developed for the electrochemical detection of α -1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0 pM and a low detection limit of 0.01 pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.

Keywords: Alzheimer's disease; α-1 antitrypsin; Sandwich assays; antibody functionalized silver nanoparticles; electrochemical biosensors

^a Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea

^b School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P.R.China

^{*} Corresponding author. E-mail address: hyejinlee@knu.ac.kr (H.J. Lee); zhgb1030@ujs.edu.cn (G. Zhu)

Download English Version:

https://daneshyari.com/en/article/5031461

Download Persian Version:

https://daneshyari.com/article/5031461

<u>Daneshyari.com</u>