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a b s t r a c t

The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics,
however most of the time separately, from either a kinematics or a dynamics point of view. As such, the
estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the
lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been
performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordi-
nate systems are viewed as a proxy for the wobbling mass movement.
The present study applied a structural vibration analysis method called smooth orthogonal decompo-

sition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical
pin markers during running, walking, cutting and hopping.
For the translations about the three axes of the bone-embedded coordinate systems, the estimated

stiffness coefficients (i.e. between 2.3 kN/m and 55.5 kN/m) as well as the corresponding forces repre-
senting the connection between bone and skin (i.e. up to 400 N) and corresponding frequencies (i.e. in
the band 10–30 Hz) were in agreement with the literature. Consistently with the STA descriptions, the
estimated stiffness coefficients were found subject- and task-specific.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The movement of the skin, muscles, and fat relative to the
underlying bone is a well-known phenomenon. It has been
described, from a kinematics point of view, as the soft tissue arte-
fact (STA). Indeed, this relative movement has a deleterious effect
on the joint kinematics estimated from skin markers and motion
capture systems (Leardini et al., 2005; Peters et al., 2010). At the
same time, from a dynamics point of view, the soft tissue motion,
modelled as wobbling masses connected to the rigid-body model
of the lower limb, is also recognised to have an effect on the joint
kinetics (i.e. energy dissipation, torque reduction) (Challis and Pain,
2008; Gruber et al., 1998) during motor tasks involving impacts
with the ground.

One key parameter of these wobbling mass models is the stiff-
ness of the springs connecting them to the rigid-bodies. Most of the
models of the literature include linear or non-linear springs
attached to a wobbling mass that can translate (and eventually
rotate) with respect to the bone (Alonso et al., 2007; Gittoes

et al., 2006; Gruber et al., 1998; Günther et al., 2003; McLean
et al., 2003; Pain and Challis, 2004; Wilson et al., 2006). Identifica-
tion of the parameters of these wobbling mass models, based on
the ground reaction forces, as well as sensitivity analyses have
been widely performed (Alonso et al., 2007; Gittoes et al., 2009;
Pain and Challis, 2004; Wilson et al., 2006). However, to the best
of the author’s knowledge, the estimation of the stiffness parame-
ters from the displacements of the skin relative to the underling
bone measured in vivo by intra-cortical pins has not been per-
formed yet. For this estimation, the displacements of the skin
markers in the bone-embedded coordinate systems are viewed as
a proxy for the wobbling mass movement.

The objective of this study was to estimate the stiffness matrix
of a wobbling mass model, defined as a cluster of lumped masses
undergoing translations about the three axes of the bone-
embedded coordinate system, by applying a structural vibration
analysis method, called smooth orthogonal decomposition
(Chelidze and Zhou, 2006) to the simultaneous measurements of
skin and intra-cortical pin markers (Benoit et al., 2006;
Reinschmidt et al., 1997). In this method, the displacement of the
skin markers relative to the underlying bone was modelled as
the free undamped vibrations of a dynamical system for which
the stiffness matrix can be straightforwardly identified.
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2. Material and methods

2.1. Smooth orthogonal decomposition of the skin movement relative to the underlying
bone

The STA vector, v j
i ðkÞ, was defined to represent the displacement that the skin

marker j (j = 1:mi) associated with the segment i (i = 1 for shank and i = 2 for thigh)
underwent relative to a relevant bone-embedded coordinate system and a refer-
ence position at each discrete time k (k = 1:n) during the analysed motor task
(Dumas et al., 2014a). The STA of all markers on the segment i were represented
using the STA field, ViðkÞ:

ViðkÞ ¼
..
.

v j
i ðkÞ
..
.

0
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1
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A sample covariance matrix was computed from this STA field known at every
sampled instants of time:

Si ¼ 1
n

� � � ViðkÞ � � �½ � � � � ViðkÞ � � �½ �T ð2Þ

This sample covariance matrix has been used in previous studies to compute, by
a proper orthogonal decomposition, the main components of the STA during a run-
ning task (Dumas et al., 2014a,b). In the smooth orthogonal decomposition, a differ-
ential operator was further introduced:

D ¼ f
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where f was the sampling frequency.
This differential operator allowed the computation of the other covariance

matrix standing for the velocities of the skin markers:

Ui ¼ 1
n� 1

D½ � � � ViðkÞ � � � �½ � � � ViðkÞ � � � �T ½D�T ð4Þ

The smooth orthogonal modes were solutions of the eigen-problem:

Si½ � � � Wl
i � � � � ¼ kiUi½ � � � Wl

i � � � � ð5Þ

with Wl
i (l = 1:3mi) the smooth orthogonal vectors and ðxl

iÞ
2 ¼ ðkliÞ

�1
the circular fre-

quencies related to the smooth orthogonal values. Assuming that the STA field was
the results of free undamped vibrations of a cluster of lumped masses (i.e. each
markers having a same mass Mi/mi), the smooth orthogonal modes are good esti-
mates of the linear normal modes. Therefore, the dynamics of the marker-cluster,
as observed from the STA field, was characterized by:

Ki½ � � � Wl
i � � � � ¼ Mi½ � � � Wl

i � � � �½ki��1 ð6Þ

with Ki the stiffness matrix, ki the diagonal matrix composed of the smooth orthog-

onal eigenvalues and Mi ¼ Mi
mi
E the mass matrix (i.e. with E the identity matrix of

dimension 3mi � 3mi).
Therefore, the stiffness matrix was given by:

Ki ¼ Mi

mi
½ � � � Wl

i � � � �½ki��1½ � � � Wl
i � � � ��1 ð7Þ

According to the recent descriptions of the STA (Andersen et al., 2012; Benoit
et al., 2015; Dumas et al., 2015; Grimpampi et al., 2014) and to the wobbling mass

models reported in the literature (Alonso et al., 2007; Bélaise et al., 2016; Challis
and Pain, 2008; Gittoes et al., 2009; Gruber et al., 1998; Günther et al., 2003;
McLean et al., 2003; Wilson et al., 2006), it was useful to retrieve the stiffness
matrix corresponding only to the modes defining the rigid marker-cluster geomet-
rical transformations and more specifically to the marker-cluster translations. This
stiffness matrix was given by:

~Ki ¼ ½ � � � Ul
i � � � �TKi½ � � � Ul

i � � � � ð8Þ

where Ul
i (l = 1:3) were the unitary basis vectors built a priori (Dumas et al., 2014a)

to define the 3 translations of the marker-cluster about the axes of the bone-
embedded coordinate system. These basis vectors were:

U1
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Finally, the force vector representing the connection between the bone and skin,
applied to each marker j at each discrete time k along each axes of the bone-
embedded coordinate system, were given by:

FiðkÞ ¼ KiViðkÞ ¼ ½ � � � Ul
i � � � �~Ki ½ � � � Ul
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Note that the last factors of Eq. (10) matched the definition of the amplitude of
the STA (Dumas et al., 2014a), that is to say the projection of the STA field on a given
mode:

aliðkÞ ¼ ðUl
iÞ
T
ViðkÞ ð11Þ

As the basis vectors Ul
i (l = 1:3) represented the translations of the marker-

cluster, each marker j had the same projected displacement and, therefore, the

same force. Moreover, �v l
iðkÞ ¼

al
i
ðkÞffiffiffiffi
mi

p directly corresponded to the projected displace-

ment of the centroid of the marker-cluster about the relevant axis of the bone-
embedded coordinate system (i.e. l = 1 for X axis, l = 2 for Y axis, and l = 3 for Z axis).
The basis vectors Ul

i (l = 1:3) were also orthogonal and, therefore, the stiffness
matrix defining the marker-cluster translations was diagonal (i.e.
~Ki ¼ diagð � � � ~Kl

i � � � Þ).

2.2. Experimental data

The retrospective data used in this study included the right thigh and shank
movements from five trials of a running task (i.e. stance phase, from ground contact
to take-off) performed by three able-bodied male subjects (Reinschmidt et al.,
1997), and from one trial of walking and cutting tasks (i.e. stance phase, from
ground contact to take-off) and hopping task (i.e. during 0.67 s after ground contact)
performed by one able-bodied male subject (Benoit et al., 2006). Clusters of markers
were attached to intra-cortical pins inserted into the lateral tibial and femoral epi-
condyles. Both intra-cortical pin markers and skin markers (i.e. between 4 and 6 by
segments) were tracked using either three high-speed cameras at 200 Hz
(Reinschmidt et al., 1997) or tracked using four infrared cameras at 120 Hz

Nomenclature

i index for segment
j index for marker
k index for sampled instant of time
n number of sampled instants of time
m number of markers on a segment
v, V STA vector, STA field
S sample covariance matrix
D differential operator
f sampling frequency
U velocity covariance matrix
W smooth orthogonal vector

k, k smooth orthogonal value, diagonal matrix of eigenval-
ues

x circular frequency
K; ~K; ~K stiffness matrix, stiffness coefficient
M, M mass, mass matrix
E identity matrix
U basis vector (i.e.marker-cluster geometrical transforma-

tion)
F force vector
a modal amplitude
�v displacement of the centroid of the marker-cluster
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