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a b s t r a c t

We developed a methodology to assess and compare the prediction quality of cardiovascular models for
patient-specific simulations calibrated with uncertainty-hampered measurements. The methodology
was applied in a one-dimensional blood flow model to estimate the impact of measurement uncertainty
in wall model parameters on the predictions of pressure and flow in an arterial network. We assessed the
prediction quality of three wall models that have been widely used in one-dimensional blood flow
simulations. A 37-artery network, previously used in one experimental and several simulation studies,
was adapted to patient-specific conditions with a set of three clinically measurable inputs: carotid–
femoral wave speed, mean arterial pressure and area in the brachial artery. We quantified the uncer-
tainty of the predicted pressure and flow waves in eight locations in the network and assessed the
sensitivity of the model prediction with respect to the measurements of wave speed, pressure and cross-
sectional area. Furthermore, we developed novel time-averaged sensitivity indices to assess the con-
tribution of model parameters to the uncertainty of time-varying quantities (e.g., pressure and flow). The
results from our patient-specific network model demonstrated that our novel indices allowed for a more
accurate sensitivity analysis of time-varying quantities compared to conventional Sobol sensitivity
indices.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The greatest challenges for the daily clinical application of
cardiovascular models are the process of model personalization
and choice of model complexity (Donders et al., 2015; Huberts
et al., 2013; Eck et al., 2015a). The amount of clinical measure-
ments of model input parameters necessary to generate a patient-
specific model should be low to reduce the burden on the patient
and the costs to the clinic. As a model becomes more complex,
more input parameters are needed, but the model prediction
becomes more certain as the physiology is better approximated.
For more input parameters, the uncertainty in the model predic-
tion may be increased due to measurement uncertainty (Eck et al.,
2015a). Uncertainty quantification (UQ) can be applied to find the
optimal balance between uncertainty of the model prediction and
input parameters. Sensitivity analysis (SA) can be applied to assess
the influence of input parameters on model predictions, e.g., with
Sobol indices (Saltelli et al., 2008). Non-influential parameters can
be fixed to population average values (parameter fixing) and the
most influential parameters selected for the clinical measurement

protocol (input prioritization) (Donders et al., 2015; Eck et al.,
2015a). Conventional Sobol indices are generally applied for scalar
model outputs. We present a novel method for assessing the
influence of input parameters on time-varying quantities, such as
pressure and flow waves in arterial networks.

In the field of cardiovascular modeling, some researchers have
applied UQ and SA (Xiu and Sherwin, 2007; Leguy et al., 2011;
Chen et al., 2013; Huberts et al., 2013; Donders et al., 2015; Eck
et al., 2015b; Biehler et al., 2015). All of these publications were
focused on model personalization, but none investigated the
application of models with different complexities. The aim of this
paper is to demonstrate how UQ and SA can help to identify the
optimal balance between framework uncertainty and model input
uncertainty. We focus on the choice of wall models, describing the
non-linear elastic behavior of arterial walls, in one-dimensional
blood flow models (1D-BFM).

The simulated arterial network is a synthetic network with 37
arteries (Matthys et al., 2007); thus, experimental data for model
validation are available. This network has been extensively used
for assessing the accuracy of numerical simulations (Matthys et al.,
2007; Alastruey et al., 2011; Xiu and Sherwin, 2007; Boileau et al.,
2015). The simulations were performed with a 1D-BFM, which was
verified in a recent benchmark study (Boileau et al., 2015) and
applied in another study involving UQ and SA (Eck et al., 2015b).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jbiomech
www.JBiomech.com

Journal of Biomechanics

http://dx.doi.org/10.1016/j.jbiomech.2016.11.042
0021-9290/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: jacob.t.sturdy@ntnu.no (J. Sturdy).

Journal of Biomechanics 50 (2017) 188–194

www.sciencedirect.com/science/journal/00219290
www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
http://dx.doi.org/10.1016/j.jbiomech.2016.11.042
http://dx.doi.org/10.1016/j.jbiomech.2016.11.042
http://dx.doi.org/10.1016/j.jbiomech.2016.11.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2016.11.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2016.11.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2016.11.042&domain=pdf
mailto:jacob.t.sturdy@ntnu.no
http://dx.doi.org/10.1016/j.jbiomech.2016.11.042


We consider three wall models with different complexities that
are commonly integrated in 1D-BFM. The first model, henceforth
denoted as the quadratic model, is by far the most used model in
publications with 1D-BFMs (Boileau et al., 2015). This model is
based on Laplace's law under the assumption that arteries behave
like thin-walled tubes (Sherwin et al., 2003). The second model,
henceforth the logarithmic model, was derived from experimental
data by Hayashi et al. (1980) and has been applied in a 1D-BFM in
Eck et al. (2015b). The third model, henceforth denoted as the
arctan model, is based on the experimentally derived compliance
pressure relationship by Langewouters et al. (1985) and was
introduced by Stergiopulos et al. (1995), who modified the model
to be more adaptive to clinical measurements, i.e., pulse wave
velocity, pressure and area. This model has been applied in 1D-
BFMs (Reymond et al., 2009, 2011; Vardoulis et al., 2013).

Several methods have been proposed in the literature to adapt
wall models in 1D-BFM to a (patient) specific condition, and such
methods can be grouped as follows: (i) a fitting procedure (i.e.,
estimation of model parameter) to a set of available measurements
(Leguy et al., 2010; Willemet et al., 2013) and (ii) the calibration of
wall models to patient-specific measurements at single locations
in the network (Eck et al., 2015b; Reymond et al., 2009, 2011;
Matthys et al., 2007; Sherwin et al., 2003). Because measurements
in clinical settings are costly, time intensive, and burdensome to
the patient, we focused on the calibration of the wall models from
a limited amount of non-invasively measurable data.

2. Methodology

2.1. One-dimensional wave propagation model

We applied the model framework presented by Eck et al.
(2015b) for UQ and SA in a 1D-BFM, which has been validated
against other BFMs (1D and 3D) and experiments (Boileau et al.,
2015).

2.2. Wall models

The elastic wall models applied in 1D-BFM are simplified
algebraic relationships A(P) (Eck et al., 2015b; Boileau et al., 2015),
relating arterial lumen area A and the transmural pressure P. The
derivative of A(P) with respect to P provides an equation for the
arterial compliance C(P):

CðPÞ ¼ dA
dP

: ð1Þ

According the fluid dynamics equations for one-dimensional
arteries, the wave speed in an arterial segment is:

cðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AðPÞ
ρCðPÞ

s
; ð2Þ

with blood density ρ¼ 1050 kg m�3.

2.2.1. Quadratic model
The quadratic area–pressure relationship (Sherwin et al., 2003)

is defined as:

AðPÞ ¼ ðP�PsÞAs

λ
þ

ffiffiffiffiffi
As

p� �2

; ð3Þ

where λ is referred to as the stiffness coefficient and As is the area
at the reference pressure Ps. The compliance function derived from
Eqs. (1) and (3) is:

CðPÞ ¼ 2As

λ
ðP�PsÞAs

λ
þ

ffiffiffiffiffi
As

p� �
: ð4Þ

2.2.2. Logarithmic model
The logarithmic area–pressure relationship (Hayashi et al.,

1980) is defined as:

AðPÞ ¼ As 1þ1
β
ln

P
Ps

� �� �2

; ð5Þ

where β is called the stiffness coefficient and As is the area at the
reference pressure Ps. The compliance function derived from Eqs.
(1) and (3) is:

CðPÞ ¼ 2As

βP
1þ1

β
ln

P
Ps

� �� �
: ð6Þ

2.2.3. Arctan model
The arctan model was first applied in a 1D-BFM by Reymond

et al. (2009) as a compliance equation:

CðPÞ ¼ Cs aþ b

1þ P�Pm

Pw

� �
0
BB@

1
CCA; ð7Þ

where Cs is the reference compliance at the reference pressure Ps.
Furthermore, Pm and Pw are shape parameters of the original
model by Langewouters et al. (1985), and a and b are scaling
coefficients introduced by Stergiopulos et al. (1995). Integration of
Eq. (7) leads to the following area–pressure relationship:

AðPÞ ¼ A1þaPCsþbPwCsarctan
P�Pm

Pw

� �
; ð8Þ

with A1 ¼ As�aPsCsþbPwCsarctan Ps �Pm
Pw

� �
and As is the area at Ps.

2.3. Calibration to measurements

Calibration of wall models and the network from a limited set
of data is essential when simulating patient-specific hemody-
namics. Thus, we focused on the calibration of these models from
three measurements in an individual: fAM ; PM ; cMg, where cM is the
carotid–femoral wave speed, AM is the time-averaged area, and PM

is the mean pressure at the brachial artery.
To calibrate a wall model to a given fAM ; PM ; cMg, we first simply

set As ¼ AM and Ps ¼ PM . Then, the wall model coefficients λ;β;Cs
� �

can be estimated from cM by inserting the area and compliance
equations of each model into Eq. (2). Equations can be found in
Sherwin et al. (2003) for λ (quadratic model), in Eck et al. (2015b)
for β (logarithmic model) and in Reymond et al. (2009) for Cs
(arctan model).

Calibration of a generic network to a given fAM ; PM ; cMg com-
bines both the calibration of wall models and the suggestions of
Vardoulis et al. (2013) and Reymond et al. (2011). The first step in
the procedure is to set the reference area and pressure at the
measurement site, letting AS

m ¼ AM and PS
m ¼ PM . Next, the As and Ps

of the remaining arteries i are adjusted to maintain their initial
ratios to the measurement point as in the generic network
(marked with G), i.e.,

AS
i ¼

AS
m

AG
m

AG
i ; PS

si ¼
PS
m

PG
m

PG
i :

Finally, the carotid–femoral wave speed of the now specific net-
work is calibrated to cM by scaling the wall model coefficients
λ;β;Cs
� �

with a common factor.

2.4. Stochastic modeling

To quantify model uncertainty and analyze its sensitivity to
particular input parameters, we followed the guidelines proposed
by Eck et al. (2015a). The non-intrusive polynomial chaos method
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