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Simple, lumped-parameter musculoskeletal models may be more adaptable and practical for clinical
real-time control applications, such as prosthesis control. In this study, we determined whether a
lumped-parameter, EMG-driven musculoskeletal model with four muscles could predict wrist and
Keywords: metacarpophalangeal (MCP) joint flexion/extension. Forearm EMG signals and joint kinematics were
Wrist collected simultaneously from 5 able-bodied (AB) subjects. For one subject with unilateral transradial

Simulation amputation (TRA), joint kinematics were collected from the sound arm during bilateral mirrored motion.
Amputation Twenty-two model parameters were optimized such that joint kinematics predicted by EMG-driven
Parameter

forward dynamic simulation closely matched measured kinematics. Cross validation was employed to
evaluate the model kinematic predictions using Pearson's correlation coefficient (r). Model predictions of
joint angles were highly to very highly positively correlated with measured values at the wrist (AB mean
r=0.94, TRA r=0.92) and MCP (AB mean r=0.88, TRA r=0.93) joints during single-joint wrist and MCP
movements, respectively. In simultaneous multi-joint movement, the prediction accuracy for TRA at the
MCP joint decreased (r=0.56), while r-values derived from AB subjects and TRA wrist motion were still
above 0.75. Though parameters were optimized to match experimental sub-maximal kinematics, passive
and maximum isometric joint moments predicted by the model were comparable to reported experi-
mental measures. Our results showed the promise of a lumped-parameter musculoskeletal model for
hand/wrist kinematic estimation. Therefore, the model might be useful for EMG control of powered
upper limb prostheses, but more work is needed to demonstrate its online performance.

© 2016 Published by Elsevier Ltd.

Optimization

1. Introduction

Computational musculoskeletal models have been used extens-
ively to investigate healthy and impaired human movement
(Higginson et al., 2006; Zajac et al., 2002) and simulate surgery
and rehabilitation (Delp et al., 1990; Saul et al., 2003; Shelburne
and Pandy, 1998), among other applications. Forward dynamic
simulation, when applied to musculoskeletal models, can generate
joint kinematic predictions from input electromyogram (EMG)
signals. Forward dynamic simulation has primarily been used off-
line, for example, to estimate muscular biomechanical contribu-
tions to movement (Neptune et al., 2001) and joint loading (Manal
and Buchanan, 2013). When executed in real-time, forward
dynamic simulation could generate motion predictions for exter-
nal devices, such as powered prostheses (Eilenberg et al., 2010).
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Many upper limb musculoskeletal models implemented for
real-time EMG-driven forward dynamic simulation include
numerous musculoskeletal elements to accurately represent
anatomy and generate physiologic predictions. Model complexity
has ranged from 5 muscles and 1 degree of freedom (DOF) to
predict isometric elbow joint moments (Manal et al., 2002), to 138
muscles and 11 DOFs to investigate the complex motions of the
arm and shoulder girdle (Chadwick et al., 2009). Unfortunately, it
may be impractical to adapt anatomically-representative models
for real-time clinical control applications, as an overwhelming
number of parameters would need to be customized. Adjusting
models parameters for amputees is even more challenging since
(1) there is no intact musculoskeletal structure from which to
measure parameters directly, and (2) the perceived biomechanical
actions associated with EMG signals are not observable and may
be altered from that of a healthy, intact limb due to cortical reor-
ganization (Ramachandran and Hirstein, 1998). Measuring EMG
for several muscles, especially deep muscles, may also be clinically
challenging and subject to crosstalk. Finally, forward dynamic
simulation of models with several musculoskeletal elements can
be computationally intensive.

Please cite this article as: Crouch, D.L., Huang, H., Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential
platform for real-time prosthesis control. Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.2016.10.035



www.sciencedirect.com/science/journal/00219290
www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
mailto:dlcrouch@ncsu.edu
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035
http://dx.doi.org/10.1016/j.jbiomech.2016.10.035

2 D.L. Crouch, H. Huang / Journal of Biomechanics  (ANEE) ENE-EER

As a counter to complex models, lumped-parameter models
that combine the action of several muscles into fewer muscle
elements may be more clinically practical (Eilenberg et al., 2010;
Lehman and Calhoun, 1990; Messier et al., 2011). Modeling fewer
muscle elements reduces (1) the number of parameters that must
be adjusted for each subject, (2) the number of input EMG signals,
and (3) the computational burden of forward dynamic simulation.
To streamline the development of subject-specific models,
researchers have used numerical optimization to adjust existing or
define novel parameters to minimize error between measured and
predicted joint moments given input EMG signals (Lehman and
Calhoun, 1990; Lloyd and Buchanan, 1996; Shin et al., 2009).
However, methods based on joint moments cannot be applied for
amputees since the moments in the missing joints are inde-
terminable. Though both motion and force mirroring have been
used as an indicator of amputee movement intent (Kamavuako
et al, 2012; Muceli and Farina, 2012), force may not be truly
mirrored since amputees cannot actively resist external loads on
their amputated side. Therefore, we propose to compute a novel
set of musculoskeletal parameters for a lumped-parameter model
to match measured joint kinematics.

The objective of our pilot study was to develop and pre-
liminarily test a lumped-parameter, 2 DOF model of the hand.
Specifically, we wanted to (1) demonstrate that the model could
reasonably predict joint kinematics during single-joint and
simultaneous two-joint movements for able-bodied subjects and a
transradial amputee; (2) compare the active and passive joint
moment-generating capacity of subjects’ models to that reported
for healthy, intact limbs; and (3) evaluate the performance and
repeatability of numerical optimization for computing model
parameters. Our findings may promote the development and
translation of real-time musculoskeletal model-based forward
dynamic simulation for multifunctional upper limb prosthesis
control.

2. Methods
2.1. Experiments and data collection

Experiments were approved by the institutional review board. Five able-bodied
(AB1-ABS5) subjects (3 males, 2 females, age range 23-31 years) and 1 subject (TRA)
with transradial amputation (male, age 42) provided informed consent to partici-
pate. Subject TRA sustained a right traumatic amputation approximately 2 years
before participating, and regularly used a body-powered prosthesis.

In one session, subjects performed 5 different types of movement in a static
upper limb posture with the arm and forearm in neutral posture and elbow flexed
to 90°: (1) wrist flexion/extension only, variable speed; (2) MCP flexion/extension
only, variable speed; (3) simultaneous wrist and MCP flexion/extension, variable
speed; (4) wrist flexion/extension only, fixed speed; and (5) MCP flexion/extension
only, fixed speed. During variable speed movements, subjects moved in self-selected
speeds and directions. In fixed speed trials, subjects alternated between maximum
extension, relaxed, and maximum flexion joint postures at a regulated tempo
(0.25 Hz). Able-bodied subjects performed the movements with the dominant arm,
while subject TRA mirrored movements bilaterally. Each movement type was tes-
ted in two trials for at least 30's; each subject performed a total of 10 trials (5
movements x 2 trials/movement). Subjects rested between trials.

During trials, EMG and kinematic data were collected synchronously from able-
bodied subjects’ dominant limb; for subject TRA, EMG and kinematics were mea-
sured from the residual and sound limb, respectively. Four bipolar surface EMG
electrodes (Biometrics, Newport, UK) were placed over muscles/muscle groups
(Fig. 1) identified by anatomical reference and palpation during experimenter-
directed movements, and confirmed by visualizing EMG. The selected muscles
generate wrist and metacarpophalangeal (MCP) flexion and extension joint
moments in intact limbs based on their musculoskeletal geometry (Perotto, 2005).
EMG data were sampled at 960 Hz, high-pass filtered at 40 Hz, rectified, enveloped,
and low-pass filtered at 6 Hz using a 4th order Butterworth zero-phase filter,
similar to previous methods (Lloyd and Besier, 2003). EMG were then normalized

by respective maximum (post-processed) EMG signal values recorded during
maximum voluntary contractions.

Given the short length of subject TRA's residual limb, EMG associated with wrist
flexion appeared in electrodes targeting both wrist and MCP flexion, as flexor digi-
torum (MPC flexion) is deep to flexor carpi ulnaris (wrist flexion) in the proximal
forearm. Therefore, similar to a previous method (Reddy and Gupta, 2007), we lin-
early transformed MCP flexor EMG (EMGycppex)to reduce EMG associated with wrist
flexion, based on the approximate proportion of wrist flexor EMG (EMGisiex)
appearing in EMGycppex during isolated wrist flexion movements (Eq.1):

EMGX/ICPﬂex = EMGMCPﬂex - O<75EMGwristﬂex (1)

Reflective markers were placed on 9 anatomical locations to track distal limb
motion (Fig. 1); thumb motion was not recorded or included in the model. Three-
dimensional marker positions were recorded at 120 Hz using an infrared motion
capture system (Vicon Motion Systems Ltd., UK), and filtered at 6 Hz using a 4th
order Butterworth filter. Wrist and MCP joint angles were computed from filtered
marker data using a musculoskeletal model (Holzbaur et al., 2005a) in OpenSim
(Delp et al., 2007) that was modified to include the 2nd through 5th MCP joints.

2.2. Dynamic hand model

We defined a planar link-segment dynamic model (dynamic properties
described in Supplementary Data) with two degrees of freedom (DOFs) - wrist and
MCP flexion/extension — that was encoded in MATLAB (MathWorks, Inc., Natick,
MA). Four muscles, one for each EMG source, were represented as Hill-type
actuators with a contractile element (CE) and parallel elastic element (PEE) (Win-
ters, 1990). A series elastic element, commonly included in Hill-type models to
represent tendon, was not included. The force output of the contractile element,
FE, was a function of its length (L), shortening velocity (vE), and state of acti-
vation (a) (Eq. 2).

FE =f1F)f(vFra )

where f(L) is the active CE force (Eq. 3) and f(v<E) is a hyperbolic scaling function
that reduces F as v°E increases (Eq. 4).

CE (LF -1y’ CE
fllee)=Fg (1 WA fL*)>o0.01 3)
0
Virax —VE CE
f(vCE)=vCE—+(vﬁ) 0<f(v) <1 4)
max c

In Eq. 3, LgE is the optimal CE length, and w, which defined the range over
which the CE could produce force as a fraction of LSE, was set at 0.5 (Buchanan et al.,

2004). In Eq. 4 the maximum CE shortening velocity (vSE,,) was set to 10 g and the
hyperbolic shape factor (c) was set to 0.25 (Winters, 1990; Zajac, 1989). The parallel
elastic element generated force (F™) when its length exceeded LS (Eq. 5).

FPEE _ PEE(CE [ CEY2 LE > [GE 5

Muscle activation states, ranging between 0 (inactive) and 1 (fully activated),
were computed from EMG, accounting for the electromechanical delay between
neural excitation, represented by EMG, and muscle force production (Lloyd and
Besier, 2003). Net joint moments (M;) at joint j were computed as the product of
muscle force and moment arm (ma) for each muscle n, summed across all k
muscles (k=4 in our model) (Eq. 6).

k
M=3 FE x mamy, (6)

ma was assumed constant with respect to joint angle. Joint moments were
applied during a forward dynamic simulation. Joint kinematics were computed by
numerically integrating the equations of motion over 1/120 second time intervals
using a 4th order Runge-Kutta method (Chadwick et al., 2009).

2.3. Numerical optimization

Twenty-two musculoskeletal parameters, constrained to approximate physio-
logic ranges (Holzbaur et al, 2005b), were computed by constrained global
numerical optimization. Six parameters were computed for each muscle (Table 1),
except, for wrist flexor and extensor muscles that only crossed the wrist and had no
moment arm at the MCP joint,mayc was set to zero. These parameters were
chosen because they strongly influence the force- and moment-generating beha-
vior of muscle.

For each subject, data from 5 of the 10 trials, one selected arbitrarily from each of
the five movement types, were used for optimization. In each optimization loop,
muscle activations were control inputs during a forward dynamic simulation. Since
the range of motion of the wrist is greater than that of the MCP joint (Norkin and
White, 2009), musculoskeletal parameters were optimized in order to minimize the
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