
Lateral migration of a capsule in a parabolic flow

S. Nix a,b, Y. Imai c,n, T. Ishikawa a,c

a Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Sendai 980-8579, Japan
b Faculty of Systems Science and Technology, Akita Prefectural University, 84-4 Ebinokuchi, Tsuchiya-aza, Yuri-honjo 015-0055, Japan
c School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Sendai 980-8579, Japan

a r t i c l e i n f o

Article history:
Accepted 7 November 2015

Keywords:
Capsule
Red blood cell
Boundary integral method
Lateral migration

a b s t r a c t

Red blood cells migrate to the center of the blood vessel in a process called axial migration, while other
blood cells, such as white blood cells and platelets, are disproportionately found near the blood vessel
wall. However, much is still unknown concerning the lateral migration of cells in the blood; the specific
effect of hydrodynamic factors such as a wall or a shear gradient is still unclear. In this study, we
investigate the lateral migration of a capsule using the boundary integral method, in order to compute
exactly an infinite computational domain for an unbounded parabolic flow and a semi-infinite compu-
tational domain for a near-wall parabolic flow in the limit of Stokes flow. We show that the capsule lift
velocity in an unbounded parabolic flow is linear with respect to the shear gradient, while the lift
velocity in a near-wall parabolic flow is dependent on the distance to the wall. Then, using these rela-
tions, we give an estimation of the relative effect of the shear gradient as a function of channel width and
distance between the capsule and the wall. This estimation can be used to determine cases in which the
effect of the shear gradient or wall can be neglected; for example, the formation of the cell-free layer in
blood vessels is determined to be unaffected by the magnitude of the shear gradient.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The lateral migration of cells in blood flow has been a topic of
extensive research since the time of Poiseuille (Sutera and Skalak,
1993). Red blood cells migrate to the center of the blood vessel in a
process called axial migration, leading to the formation of a cell-
free layer near the vessel wall; the resulting decrease in blood
viscosity due to the presence of the cell-free layer is referred to as
the Fahraeus–Lindqvist effect (Fahraeus and Lindqvist, 1931;
Goldsmith et al., 1989). Conversely, experiments have found that
other blood cells, such as white blood cells (Goldsmith and Spain,
1984; Phibbs, 1966; Schmid-Schonbein et al., 1980) and platelets
(Leonard et al., 1972; Turitto et al., 1972; Turitto and Baumgartner,
1975) are disproportionately found near the blood vessel wall.
Despite a large breadth of literature of research on the migration
of cells within the blood, the quantifiable effect of factors such as
red blood cell aggregation and hydrodynamic lift is still unclear.

In the microcirculation, where the vessel diameter is on the
order of tens to hundreds of micrometers, the Reynolds number is
less than 10�3, so blood flow in such vessels can be treated as a
Stokes flow. In a Stokes flow, the lift of a deformable particle is
induced by two hydrodynamic factors: the presence of a wall or
shear gradient (Chan and Leal, 1979).

In terms of clarifying the effect of a wall, much research has
been concentrated on the noninertial lateral migration of
deformable particles in a simple shear flow near an infinite planar
wall. Early analytical studies focused on the lateral migration of a
liquid drop, or a small amount of liquid under the influence of
surface tension suspended in a different liquid. These studies
found that, at small deformation, the drop lift velocity is a function
of the distance between the drop and the wall and the drop
deformation (Chaffey et al., 1965; Chan and Leal, 1979; Smart and
Leighton, 1991). Subsequent experimental and numerical studies
confirmed these findings in cases when the drop is far from the
wall, but found a decrease in the lift velocity relative to the pre-
dicted values when drops were placed near the wall (Smart and
Leighton, 1991; Uijttewaal et al., 1993; Uijttewaal and Nijhof, 1995).
Similar results have been reported for the lateral migration of
vesicles, or liquid drops enclosed by a lipid bilayer (Smart and
Leighton, 1991; Uijttewaal et al., 1993; Uijttewaal and Nijhof, 1995),
and capsules, or liquid drops enclosed by an elastic membrane
(Nix et al., 2014).

Other studies have examined the effect of a shear gradient on
the lateral migration of deformable particles in large bounded or
unbounded parabolic flows. Chan and Leal (1979) suggested that
migration away from the flow centerline occurs when the viscosity
ratio between the drop and the surrounding fluid takes on inter-
mediate values, and that migration toward the flow centerline
occurs at low or high viscosity ratios. While this behavior has been
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observed for a drop at finite Reynolds number (Mortazavi and
Tryggvason, 2000), drops in Stokes flow are observed to migrate
toward the centerline for a wide range of viscosity ratios (Griggs et
al., 2007). Vesicles (Coupier et al., 2008; Kaoui et al., 2008) and
capsules (Doddi and Bagchi, 2008; Helmy and Barthes-Biesel,
1982; Shi et al., 2012) in Stokes flow are also observed to migrate
toward the centerline in both bounded and unbounded
parabolic flows.

However, previous studies have not been able to clarify the
separate effects of the wall and shear gradient on the lateral
migration of deformable particles. Analytical studies are able to
consider these two effects separately, but they are restricted to the
assumptions of small deformation and large distances to the wall
that rarely hold in realistic systems. Experimental and numerical
studies are able to clarify the behavior of deformable particles at
large deformation and small distances to the wall, but the effects
of the wall and shear gradient are unable to be decoupled by
experimental and most conventional numerical methods. Fur-
thermore, an infinite or semi-infinite computational domain is
necessary to isolate the effect of a shear gradient or single wall on
the lateral migration of a particle.

Thus, in this study, we investigate the lateral migration of a capsule
using the boundary integral method, inwhich infinite and semi-infinite
computational domains are easily implemented, and the capsule velo-
city is represented as a sum of the surrounding flow and the boundaries
within the flow, so the effects of the wall and shear gradient are easily
decoupled. We show that the extent of the contribution of the shear
gradient in a near-wall parabolic flow is determined solely by the dis-
tance between the wall and flow centerline and the distance between
the capsule and wall. We also show the influence of viscosity ratio on
the wall-induced and shear gradient-induced lift velocity and discuss
the effect on the migration of red blood cells.

2. Numerical method

An initially spherical capsule of radius a and inner viscosity λμ
is suspended in a Newtonian fluid with viscosity μ. The capsule is
suspended in a parabolic flow, with velocity oriented in the x1
direction, that is either unbounded or bounded on one side by an
infinite planar wall at x3 ¼ 0, as shown in Fig. 1. In either case, the
parabolic flow takes on the form

u1 ¼ _γwx3�
1
2
kx23

� �
e1; ð1Þ

where u1 henceforth refers to the applied velocity field, _γw is the
shear rate at x3 ¼ 0,

k� d2u1
1

dx23
ð2Þ

is the shear gradient, and ei is the Cartesian basis. The capsule is
placed at an initial position x3 ¼ h between x3 ¼ 0 and the

centerline of the flow at x3 ¼ _γw=k. The nondimensional shear rate
at the capsule centroid is given by the local capillary number,

Cal ¼
μ _γ la
Gs

; ð3Þ

where the local shear rate _γ l is defined in terms of _γw as

_γ l �
du1

1

dx3
¼ _γw�kh: ð4Þ

The capsule membrane has a surface shear modulus Gs with
negligible bending modulus, as the effect of the membrane elas-
ticity is several orders of magnitude larger than the bending
resistance (Parker and Winlove, 1999). The elasticity of the capsule
membrane is described by the Skalak constitutive law (Skalak et
al., 1973),

ws ¼
Gs

4
½ðλ21�1Þ2þðλ22�1Þ2þCðλ21λ22�1Þ2�; ð5Þ

where λ1, and λ2 are the principal stretch ratios of the membrane,
and C is a constant representing the degree of incompressibility of
the capsule membrane, such that the area dilation modulus of the
membrane is equal to Gsð1þ2CÞ. Here, the values C¼1 and C = 10
are considered. The shear gradient is nondimensionalised by the
local shear rate to give the nondimensional parameter ka= _γ l.

The capsule motion is solved numerically on Tesla C2070 and
K20 graphics processing units (GPUs) (nVIDIA) using a method
that couples the finite element method and boundary integral
method (Matsunaga et al., 2014; Walter et al., 2010). In this
method, the membrane tension is first solved using the con-
stitutive law given in Eq. (5), then the viscous load on the mem-
brane is solved using the finite element method to solve the
equilibrium equation:Z
A
û � q dA¼

Z
A
ε̂
¼

: T
¼
dA; ð6Þ

where q is the viscous load, T
¼

is the membrane tension, û is a

virtual displacement, and ε̂
¼

is the associated virtual strain.

The membrane velocity is solved from the viscous load using
the boundary integral equation, given by

uiðx0Þ ¼ u1
i ðx0Þ� 1

8πμ

R
AGijðx0; xÞqjðxÞ dA

þ1�λ
8π

R
ATijkðx0; xÞujðxÞnkðxÞ dA

ð7Þ

where uiðx0 Þ and uiðxÞ are velocities on the capsule membrane, n is
the outward-pointing normal vector of the area dA, and Gij is the
Green's function with associated stress tensor Tijk. In an unboun-
ded flow, Gij is equal to the free-space Green's function,

G0
ijðx0; xÞ ¼

δij
r
þrirj

r3
; ð8Þ

where ri ¼ x0;i�xi and r¼ j r j . In cases where a planar wall is
considered as part of the computational domain, the effect of the
wall is solved using a modified Green's function (Blake, 1971),

Gijðx0; xÞ ¼ G0
ijðx0; xÞ�G0

ijðx0; x 0Þ
þ2 h2GD

ij ðx0; x 0Þ�2 hGSD
ij ðx0; x 0Þ;

ð9Þ

where

GD
ij ðx0; x 0Þ ¼ ð1�2δj3Þ

δij
R3�

3RiRj

R5

� �
;

GSD
ij ðx0; x 0Þ ¼ ð1�2δj3Þ

δijR3�δi3Rjþδj3Ri

R3 �3RiRjR3

R5

� �
;

δ ij is the Kronecker delta, x0i ¼ xi�2δi3h is the position of a point
on the capsule membrane reflected across a wall placed at x3 ¼ 0,
Ri ¼ x0;i�x0i, and R¼ jR j .

Fig. 1. Schematic showing capsule initial position and flow conditions in the case of
a capsule placed near a planar wall.
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