
A fully dynamic multi-compartmental poroelastic system: Application
to aqueductal stenosis

Dean Chou a, John C. Vardakis b, Liwei Guo b, Brett J. Tully c, Yiannis Ventikos b,n

a Institute of Biomedical Engineering & Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
b Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
c First Light Fusion Ltd., Begbroke Science Park, Begbroke, Oxfordshire, OX5 1PF, UK

a r t i c l e i n f o

Article history:
Accepted 21 November 2015

Keywords:
Multiple-network poroelastic theory
Hydrocephalus
Aqueduct
Cerebrospinal fluid
Stenosis

a b s t r a c t

This study proposes the implementation of a fully dynamic four-network poroelastic model which is
underpinned by multiple-network poroelastic theory (MPET), in order to account for the effects of
varying stages of aqueductal stenosis and atresia during acute hydrocephalus. The innovation of the fully
dynamic MPET implementation is that it avoids the commonplace assumption of quasi-steady behaviour;
instead, it incorporates all transient terms in the casting of the equations and in the numerical solution of
the resulting discrete system.

It was observed that the application of mild stenosis allows for a constant value of amalgamated
ventricular displacement in under 2.4 h, whereas the application of a severe stenosis delays this set-
tlement to approximately 10 h. A completely blocked aqueduct does not show a clear sign of reaching a
steady ventricular displacement after 24 h. The increasing ventricular pressure (complemented with
ventriculomegaly) during severe stenosis is causing the trans-parenchymal tissue region to respond, and
this coping mechanism is most attenuated at the regions closest to the skull and the ventricles. After 9 h,
the parenchymal tissue shows to be coping well with the additional pressure burden, since both ven-
triculomegaly and ventricular CSF (cerebrospinal fluid) pressure show small increases between 9 and
24 h. Localised swelling in the periventricular region could also be observed through CSF fluid content,
whilst dilation results showed stretch and compression of cortical tissue adjacent to the ventricles
and skull.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Hydrocephalus

Hydrocephalus can be described as the abnormal accumulation
of Cerebrospinal fluid (CSF) within the brain (Tully and Ventikos,
2011; Rekate, 2009; Thompson, 2009; Stagno et al., 2013).
Hydrocephalus is classified as obstructive when the point of CSF
blockage or distinct lesion lies within the ventricular system and
hinders flow before it enters the subarachnoid space (Corns and
Martin, 2012). If this is not the case, it is generally known as
communicating hydrocephalus.

1.2. Aqueductal stenosis

Cinalli et al. (2010) describe the aqueduct as a curved conduit
around 15 mm in length and up to 3 mm in width, with concavity

towards the base of the skull and a highly variable cross section,
where there is a shape transition from triangular (cranial orifice),
oval in the central area and finally resembles an inverted “U” at the
level of the inferior colliculi (Jellinger, 1986). The interior lumen of
the Sylvian aqueduct is lined with ependymal cells (Bruni, 1998).
This cell layer however, is not confined to being unicellular, and in
some cases ependymal cells may even be absent from the lining of
the aqueduct. These denuded areas pose a problem since they may
lead to the bridging of the canal via an overproduction of glial fibrils.

Mass lesions (from tumours or vascular malformaitons) may
aid in the stenosis/atresia of the aqueduct of Sylvius. In addition,
histopathological classifications of “nontumoral aqueduct anoma-
lies” have been confirmed as Stenosis, Forking, Septum formation
and Gliotic stenosis (Cinalli, 2010; Russel, 1949; Spennato et al.,
2013). During stenosis, the aqueduct is forced to narrow and the
ependymal lining of the lumen remains intact. Gliotic stenosis may
be considered an acquired condition and is characterised by the
occlusion of the aqueduct due to an overproduction of glial fibres
or the creation of multiple channels that lack an evident epen-
dymal lining (Cinalli, 2010).
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1.3. Modelling aqueductal stenosis using poroelasticity

There are numerous works in the literature that have utilised a
poroelastic approach in modelling parenchymal tissue (Kaczmarek
et al., 1997; Levine, 1999, 2000; Smillie et al., 2005; Shahim et al.,
2012; Tully and Ventikos, 2009, 2011; Vardakis et al., 2013a).
Considering aqueductal stenosis or atresia whilst modelling the
brain as a poroelastic medium in the manner outlined in this work
(excluding any CFD coupling) yields a narrower selection of rele-
vant work (Smillie et al., 2005; Sobey and Wirth, 2006).

In this manuscript, we investigate the effect of artificially
imposed aqueductal stenosis and atresia using a novel application
of a one dimensional, fully dynamic multiple-network poroelastic
(MPET) formulation. The MPET formulation allows the tracking of
the parenchymal matrix displacement (relative to a reference
position), which assimilates the pore pressures of the respective
fluid networks. Once the methodology has been described, some
results based on aqueductal stenosis follow, along with the inter-
pretation of these results.

2. Methods

In this section, we outline the definition of the MPET framework that is used to
model parenchymal tissue, along with its adaptation to the cerebral environment.
We then proceed with outlining the spherical representation of the cerebral
environment that dictates the nature of the 1D MPET model. Boundary conditions
are then discussed, along with justification of the poroelastic constants.

2.1. Multiple-network poroelastic formulation

The classical form of Biot's consolidation model (Biot, 1941) is described for an
isotropic and incompressible solid matrix and homogenous porous medium. For a
simple poroelastic medium to be defined, an equilibrium equation is needed to
define elastic deformation and Darcy's law is used to model fluid flow. Finally, mass
conservation is also required. Biologically, the quadruple MPET system is derived by
accommodating a high pressure arterial network (a), lower pressure arteriole/
capillary network (c), interstitial fluid (ISF)/CSF network (e) and finally a venous
network (v) (Tully and Ventikos, 2011). One may cast equations to be solved for the
mean displacement of particles forming the solid matrix, u, and the scalar pore
pressures of the extended multicompartmental porous medium (pa, pc, pe, pv)
which is defined through multiple-network poroelastic theory (MPET). A general
MPET derivation will now follow.

The stress–strain relationship for a solid is re-written in the form reminiscent
of Rice and Cleary (1976), which makes use of Lamé's constants (G, λ), and sub-
sequently extended to multiple-porosity poroelasticity:

σij ¼ 2Gϵijþλϵkkδij�
X

A ¼ a;e;c;v

αApAδij ð1Þ

In the above equation, the Biot–Willis coefficient α can be interpreted from
both a microscopic and macroscopic perspective. The global version of the Biot–
Willis parameter allows for Eq. (1) to be interpreted as the weighted average
contribution of each fluid network to the constitutive effective stress of the
multiple-network system. The range of values for the global Biot–Willis coefficient
is α[0, 1].

Darcy's Law is extended to take into account all of the fluid networks, hence:
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The first governing equation of motion for a unit volume within the MPET
framework is given by:
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σij;j is the stress within the solid matrix. The convention will be made to align a
positive value of this stress with a tension. ui describes the mean displacement of
elements forming the solid matrix, wi is the ratio of fluid flow to cross sectional

area and
PA
a ¼ 1

naρaþð1�nÞρs is the total density of the system, ρs is the solid density

and
PA
a ¼ 1

na is the total porosity of all the individual fluid networks. Finally, bi is the

body force per unit mass.

The second governing equation of motion is that defining the momentum of
each individual fluid network:
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In the above, Ra
i is the viscous drag force utilising Darcy's seepage law (Zien-

kiewicz et al., 1999).
Flow conservation for the fluid phase is given by:
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_εii is the rate of change of the strain within the solid matrix, αA is the Biot
parameter of the fluid network in question and finally the right hand side possesses
either source (ŝij40) or sink (ŝijo0) densities and q represents the fluid flux vector.
From Eq. (5), the fluid phase continuity equations include the sum of all com-
partmental fluxes (ŝij), from network j to i. Here, the transfer is considered to be
driven by a hydrostatic pressure gradient, whilst ωij is the transfer coefficient
scaling the flow from network j to network i.

Eliminating wA
i from Eq. (4) as in Tully and Ventikos (2011), one may then focus

on the primary variables u and p. Utilising Darcy's seepage law (Zienkiewicz et al.,
1999) and Eq. (4), one obtains:
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i ¼ kAijp
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kAij defines the anisotropic permeability coefficient. If isotropy is sought, this
value is replaced by a single kA constant (which is assumed in this manuscript).
Substituting Eq. (6) to into Eq. (5), one obtains:
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Finally, Eq. (1) is combined with Eq. (3), and ignoring the fluid acceleration
relative to the solid and the convective terms of this acceleration, one obtains the
final system:
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2.2. Adaptation to the cerebral environment

The first stage of adapting an MPET modelling framework to describe the
transfer of fluid through the brain parenchyma, is to postulate the overall formation
of the MPET network. In this work, the solid porous matrix represents the tissue in
the brain parenchyma, whilst the communicating fluid phases that will be taken
into account are: arterial blood (a), arteriole/capillary blood (c), venous blood (v)
and the CSF/ISF (e) space, i.e. four networks (Tully and Ventikos, 2011). Repre-
senting the Σωij(p

j-pi) terms on the right hand side of Eq. (4) as ŝij, the field Eqs.
(5) and (6) for the four compartment MPET model are as follows:
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In the above equation, the Sε term is the inverse of the specific storage (a
measure of the released fluid volume per unit pressure in the control volume) at
constant strain for each fluid compartment.

The transfer of fluid between four fluid networks is required to obey the law of
continuity for the entire system, and so directionality between fluid compartments
must be accurately specified. Fig. 1a provides a summary of the directional fluid
restrictions placed. It is noted that the current MPET template takes into account
the physiological relationship between CSF and ISF best represented in the recent
literature (Iliff et al., 2012). It has been shown that CSF and ISF are in continuous
exchange. The convective influx of CSF along the periarterial space facilitates this
process. The glymphatic system recently discovered best portrays this macroscopic
process, which also takes into account strategically located Aquaporin-4 channels.
In previous work by the same authors (Vardakis et al., 2013b), this aquaporin
channel was taken into account by a very simple functional relationship which
varied the base permeability of the CSF compartment in the MPET system. In this
work, the permeability of the CSF/ISF compartment keeps a constant value (see
Table 1). The latter four equations are applied to the pressure gradients of the
deformed brain configuration, whereas the stress equilibrium Eq. (9a) combines
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