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a b s t r a c t 

We propose an arterial network model based on one-dimensional hemodynamic equations to study the 

behavior of different vascular surgical bypass grafts in the case of an arterial occlusive pathology: a 

stenosis of the Right Iliac artery. We investigate the performances of three different bypass grafts (Aorto- 

Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree of obstruction of the stenosis. 

Numerical simulations show that all bypass grafts are efficient since we retrieve in each case the healthy 

hemodynamics downstream of the stenosed region while ensuring at the same time a global healthy cir- 

culation. We analyze in detail the behavior of the Axillo-Femoral bypass graft by performing hundreds 

of simulations where we vary the values of its Young’s modulus [0.1–50 MPa] and radius [0.01–5 cm]. 

Our analysis shows that Young’s modulus and radius of commercial bypass grafts are optimal in terms 

of hemodynamic considerations. Our numerical findings prove that this model approach can be used to 

optimize or plan patient-specific surgeries, to numerically assess the viability of bypass grafts and to 

perform parametric analysis and error propagation evaluations by running extensive simulations. 

© 2017 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Arterial diseases such as stenoses are frequent clinical patholo- 

gies, and their prevalence is evaluated from 3% to 10% in the global 

population with a significant growth from 15% to 20% in persons 

over 70 years old [1] . Stenoses correspond to the partial or total 

obstruction of an artery and can cause symptoms going from in- 

termittent claudication to severe ischemia. These symptoms result 

from a decrease in blood supply as the diseased vessel providing 

vascularization is narrowed or occluded. When untreated, stenoses 

can have severe consequences and can lead to the amputation of 

the stenosed member, especially when they occur in the arteries 

of the lower members, such as in the Iliac arteries. 

When the symptoms are too severe or when medical treatment 

fails, surgery is necessary to restore blood flow downstream of the 

stenosed member. This can be done by angioplasty stenting, where 

the obstructed segment is replaced by a prosthesis (stent) during 

an endovascular substitution surgery. An alternative solution con- 

sists in inserting a bypass graft to redirect the flow of blood from 

a healthy artery to bypass the obstructed vessel and restore blood 

flow downstream of the stenosis. In both cases, the mechanical 

role of these grafts or conduits is to replace or bypass vessels that 
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have become occluded or severely obstructed by a disease process 

[2] . 

Numerical studies following local endovascular graft replace- 

ments have been reported previously (e.g., [3,4] ). We propose to 

study instead extracorporeal bypass graft procedures. To do so, 

we consider a detailed model of the systemic network which 

presents a stenosis of the Right Iliac artery. In this pathological 

case, the most common bypass graft configurations are: Aorto- 

Femoral, Axillo-Femoral and cross-over Femoral, defined by the 

combination of the name of the healthy or donor artery (Aorto for 

Aorta, Axillo for Axillary and cross-over for the opposite artery, the 

Left Femoral Artery) and the name of the receptor artery, in our 

case the Right Femoral artery which follows distally the narrowed 

site. 

The aim of this communication is to use a one-dimensional 

(1D) model to compute blood flow in each segment of the consid- 

ered model network before and after extracorporeal bypass graft 

surgery. To help clinicians optimize surgical repair, we evaluate the 

viability of each bypass graft by computing the flow rate and pres- 

sure downstream of the stenosed member, which is an a posteri- 

ori evaluation of the quality of the surgery. Clinicians often prefer 

the Aorto-Femoral bypass graft. However, for weak patients who 

cannot tolerate the aortic clamping required to insert the Aorto- 

Femoral bypass graft, the preferred solution is an extra-anatomic 

Axillo-Femoral bypass graft [5] . Furthermore, it has the short- 

est graft survival time among the three previously named bypass 

grafts [6,7] . We therefore study in detail the optimization of the 
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geometrical and mechanical characteristics of the Axillo-Femoral 

bypass graft. We hope that this numerical approach will be used 

in the future to define the optimal parameters of new prosthesis 

and help clinicians plan surgeries. 

Here, we present a numerical model and model arterial net- 

work, as applied to the study of flow through three different ar- 

terial bypass graft configurations, along with the results of a para- 

metric study of the Axillo-Femoral bypass graft. We propose only 

hemodynamic predictions based on fluid mechanics equations, re- 

gardless of biological phenomena and their consequences. Never- 

theless, we are aware that short term graft failures can be caused 

by infections or hemorrhages, while long-term failures are the re- 

sult of intimal hyperplasia of the graft site, with a proliferation and 

a migration of vascular smooth muscle cells near the arterial wall 

[6] . 

2. Numerical model 

To compute the hemodynamics in an artery, we use a set of 

one-dimensional (1D) equations expressed in terms of the flow 

rate Q , the cross-sectional area A and the internal average pres- 

sure P in the artery. This 1D system of equations results from the 

integration of the Navier–Stokes equations for an incompressible 

Newtonian fluid over the cross-sectional area of the artery, leading 

to the following mass and momentum 1D conservation equations 

∂A 

∂t 
+ 

∂Q 

∂x 
= 0 , (1) 

∂Q 
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+ 

∂ 

∂x 
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]
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, (2) 

where u x is the axial velocity, ρ is the fluid density and ν is 

the kinematic viscosity of the fluid. We set ρ = 1 g / cm 

3 and ν = 

3 . 5 10 −2 cm 

2 / s , which are typical values for blood. The internal 

pressure P is related to the cross-sectional area A through the fol- 

lowing relationship 

P = P ext + β( 
√ 

A −
√ 

A 0 ) + νs 
∂A 

∂t 
, (3) 

under the assumption that the arterial wall is thin, isotropic, ho- 

mogeneous, incompressible and that it deforms axisymmetrically 

with each circular cross-section independently of the others. The 

parameter β describes the elastic behavior of the wall 

β = 

√ 

πEh 

(1 − η2 ) A 0 

, 

and the parameter νs its viscoelastic behavior, that we describe us- 

ing a Kelvin–Voigt model [8] 

νs = 

√ 

πρφh 

2 ρ(1 − η2 ) 
√ 

A 0 A 

. 

Young’s modulus E , the Poisson ratio η, the viscoelastic coefficient 

φ and the arterial thickness h are given in Table A.1 in Appendix A . 

More details can be found elsewhere [9] . By approximating the 

friction drag by −C f Q/A and using the expression (3) for the pres- 

sure P , we can re-write the momentum equation (2) as 
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We set C f = 22 πν as was computed from coronary blood flow in 

[10] and we define C v = 

Aνs 
ρ . 

From a mathematical point of view, the system of Eqs. (1) –(4) 

can be decomposed in a hyperbolic subproblem (transport equa- 

tion) and a parabolic subproblem (viscoelastic source term). To 

obtain the numerical solution of both subproblems, we introduce 

a mesh in the axial direction by dividing each artery in a se- 

ries of cells of size 	x . We then define the discrete time t n = 

n 	t, where 	t is the time step. Using this decomposition of the 

space and time domains, we discretize the hyperbolic subprob- 

lem with a MUSCL (monotonic upwind scheme for conservation 

law) finite volume scheme and the parabolic subproblem with a 

Crank–Nicolson scheme. We compute the numerical solution using 

a code developed in our laboratory, written in C++ and parallelized 

with OpenMP. The numerical implementation of the full viscoelas- 

tic nonlinear system has been validated by comparing the com- 

puted solutions to analytic solutions of the linearized system and 

to experimental data [9,11] . 

The network used in the numerical simulations is constructed 

by connecting different arterial segments together. These connec- 

tions take place at branching points. As an example, we consid- 

ered a simple branching problem: a single parent vessel connected 

to two daughter arteries. In this configuration, there are six un- 

knowns at the iteration n + 1 (numerically speaking, n refers to 

time t n and n + 1 to time t n +1 ): A 

n +1 
p and Q 

n +1 
p for the outlet of 

the parent artery and A 

n +1 
d 1 

, Q 

n +1 
d 1 

, A 

n +1 
d 2 

and Q 

n +1 
d 2 

for the inlets of 

the two daughter arteries. These quantities are function of the val- 

ues at the iteration n . To determine these unknowns, we impose 

the basic laws of conservation at the branching point, that is the 

conservation of mass flux 

Q 
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The pressures P are expressed as a function of the cross-sectional 

area A using the constitutive relation (3) . By matching at the 

branching point the incoming and outgoing characteristics of the 

hyperbolic subproblem, we obtain the last three equations we need 

to complete the resolution of the branching point problem. Energy 

losses should be taken into account due to the complex flow in the 

branching sites but, in practice, these losses have only secondary 

effects on the pulse waves [8] , therefore we neglect them. 

To drive the flow through the network, we prescribe inlet and 

outlet boundary conditions. These boundary conditions are: (i) an 

imposed physiological flow rate at the inlet of the ascending aorta 

and (ii) reflection coefficients imposed at the outlet of each termi- 

nal segment and characterizing the resistance of the vascular bed 

that is not taken into account in our model. These values are given 

in the last column of Table A.1 in Appendix A . The input flow rate 

signal we use in the numerical simulations is 

Q(t) = 

{
Q max sin ( 2 π

T 
t) if t ≤ T / 2 ;

0 . if t > T / 2 . 

where T is the period of the heart cycle. To define the maximum 

flow rate Q max , we introduce the ejection fraction EF , defined as 

E F = 

E DV − E SV 

E DV 

× 100 , (5) 

where EDV is the End Diastolic Volume and ESV is the End Systolic 

Volume. Healthy people typically have an EF between 50% and 65%. 

On the contrary, people with heart muscles damages (principally 

on the myocardium) have a low EF . The ejected volume V e = EDV −
ESV during one period is computed by integrating Q ( t ) over one 

period 

V e = Q max 
T 

π
. (6) 

Finally we have 

Q max = E F π
E DV 

T 
, (7) 
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