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a b s t r a c t 

Aim: To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and 

combining multiple EEG features. Methods: Two EEG experts annotated bursts in individual EEG channels 

for 36 preterm infants with gestational age < 30 weeks. The feature set included spectral, amplitude, and 

frequency-weighted energy features. Using a consensus annotation, feature selection removed redundant 

features and a support vector machine combined features. Area under the receiver operator characteristic 

(AUC) and Cohen’s kappa ( κ) evaluated performance within a cross-validation procedure. Results: The 

proposed channel-independent method improves AUC by 4–5% over existing methods ( p < 0.001, n = 36 ), 

with median (95% confidence interval) AUC of 0.989 (0.973–0.997) and sensitivity–specificity of 95.8–

94.4%. Agreement rates between the detector and experts’ annotations, κ = 0 . 72 (0.36–0.83) and κ = 0 . 65 

(0.32–0.81), are comparable to inter-rater agreement, κ = 0 . 60 (0.21–0.74). Conclusions: Automating the 

visual identification of bursts in preterm EEG is achievable with a high level of accuracy. Multiple features, 

combined using a data-driven approach, improves on existing single-feature methods. 

© 2017 The Authors. Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Preterm birth is the single largest risk factor for perinatal mor- 

tality and morbidity, accounting for over 1 million deaths every 

year [1] . The immature brain of the preterm infant is especially 

vulnerable and often the source of long-term health problems. The 

electroencephalogram (EEG) can help identify at-risk infants by 

providing continuous cot-side monitoring of brain activity in the 

neonatal intensive care unit (NICU). The EEG, however, requires 

interpretation by specialist staff which often makes it impractical 

to provide continuous reporting for all infants. Automated EEG 

analysis could overcome this limitation and provide the clinician 

with relevant information, in real time, to guide treatment during 

critical care. 

Early preterm EEG exhibits an intermittent or discontinuous 

pattern ( tracé discontinu ) consisting of low-voltage activity, known 
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as inter-bursts, followed by short-duration higher-voltage activity, 

known as bursts or spontaneous activity transients [2] . This pat- 

tern differs to the burst-suppression pattern found in the EEG 

of adults and full-term infants, a pattern associated with severe 

brain injury or coma [3] . In contrast, the discontinuous pattern 

is indicative of normal, healthy neurological development for the 

preterm infant. An important first stage for any automated anal- 

ysis of preterm EEG is to distinguish between bursts and inter- 

bursts. Simple features of this bursting pattern, such as maximum 

inter-burst duration, relate to neurological development and are 

associated with neurological delay [4–7] . Segmentation of the EEG 

into bursts and inter-bursts is an essential first-stage for more ad- 

vanced automated analysis; for example to predict neurodevelop- 

mental outcome [8] , detect changes in sleep states [9] , or assess 

changes in maturation [7] . 

Existing methods for detecting bursts in preterm EEG rely 

on either amplitude or frequency characteristics, or combina- 

tions of both [2,6,8,10–19] . Many of these methods, however, 

were not designed as stand-alone detection methods and have 

not been assessed with the gold standard, the EEG expert’s 

visual interpretation of the EEG [2,8,10,11,13,16] . For those meth- 

ods with performance validation metrics, the more promising 

methods employ frequency-weighted energy measures, which 
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multiply amplitude and frequency to estimate energy [6,17–

19] . Yet the relative importance of amplitude and frequency 

features is unknown, and their optimal combination is as yet 

unexplored. 

Here, we propose to assess multiple amplitude and frequency 

features separately and then combine these features in a classi- 

fier. This approach has been applied to detecting burst-suppression 

patterns in full-term EEG [20,21] . Based on training from a large 

database of preterm EEG, machine learning algorithms can infer 

the best combination rules. We apply a feature selection proce- 

dure, that maximises relevancy and minimises redundancy, thus 

retaining only necessary features. Unlike existing methods, which 

either operate on 1 specific channel [17] or all channels simul- 

taneously [6,18] , channels are processed independently as bursts 

can be focal or multi-focal and not always generalised across all 

channels. For example, in asynchronous activity bursts will not oc- 

cur simultaneously across hemispheres [22] . For performance test- 

ing, feature sets and all parameters are estimated using strata 

of cross-validations to avoid overlap between training and testing 

data. 

2. Methods 

2.1. Acquiring and annotating the EEG 

EEG data were collected from the NICU of the Cork Univer- 

sity Maternity Hospital, Ireland, during the period 2009–2011. Data 

collection was approved by the Cork Research Ethics Committee 

of Cork Teaching Hospitals, Ireland. Informed and written parental 

consent was obtained before EEG recording. 

EEG was recorded with the NicoletOne EEG system (CareFusion 

Co., San Diego, USA) using 11 electrodes according to the inter- 

national 10–20 system of electrode configuration over the frontal, 

central, temporal, and occipital regions, a reference electrode at Fz, 

and a ground electrode behind the left ear. EEGs were recorded 

within 72 h of birth with a sampling frequency of 256 Hz. Infants 

with reported severe brain injuries, determined by cranial ultra- 

sound scans within the first week of life, were not included. 

Ten-minute segments with minimal artefact were selected from 

36 EEG records (one segment per infant). These 10 min segments 

were, on average, 14 h post-birth (range: 3–41 h). Gestational age 

ranged from 23.4 weeks to 29.7 weeks with a mean of 27.4 weeks. 

Two clinical physiologists (RO Lloyd and RM Goulding) anno- 

tated all EEG segments for bursts and inter-bursts. Bursts were 

defined as any preterm EEG activity not explicitly categorised 

as inter-bursts. Therefore the annotations included long-duration 

bursts ( > 20 s) which some classification systems would label as 

continuous activity [4] . We chose not to distinguish between bursts 

and continuous activity because the difference between continuous 

and discontinuous activity is not clearly defined for infants with 

gestational age less than 32 weeks [4] . Example annotations are in 

Fig. 1 . 

EEG was analysed using the bipolar montage F4-C4, C4-O2, F3- 

C3, C3-O1, T4-C4, C4-Cz, Cz-C3, and C3-T3. EEG channels were 

annotated separately to develop a channel independent detector. 

As bursts do not always occur synchronously across all channels, 

a single channel was extracted for review to avoid annotation 

bias caused by the simultaneous display of multiple channels. One 

channel per infant was annotated and channel selection was alter- 

nated over all EEG records to avoid a channel bias. For example, 

F4-C4 was used for the first EEG, C4-O2 was used for the second, 

and so on. For all 36 EEGs, each channel was selected a median of 

4.5 (range: 3–6) times. 

Annotations differed between the two reviewers, as the exam- 

ple in Fig. 1 highlights. A consensus annotation, including only the 

burst or inter-burst periods where both reviewers agreed, was used 

for training and testing the classifier. 

2.2. Feature set 

Fig. 2 highlights differences between bursts and inter-bursts. 

For example spectral power, across all frequencies, is greater for 

bursts comparative to inter-bursts [ Fig. 2 (a)]. Not surprising, con- 

sidering amplitude plays a key role in many detection methods 

[2,6,8,12,17–19] . 

But also of interest are spectral characteristics independent of 

total power. Differences in relative spectral power is evident in the 

normalised spectra in Figs. 2 (b) and the burst-to-inter-burst ratio 

(the difference in spectral power in dBs between the median burst 

and inter-burst spectra) in Fig. 2 (c). Fig. 2 (b) shows that the inter- 

bursts have an almost linear log–log frequency response compared 

with the more nonlinear response of the bursts. The following fea- 

ture set aims to capture these differences in amplitude, relative 

spectral power, and spectral shape. These features are calculated 

within four frequency bands: band 1 (0.5–3 Hz), band 2 (3–8 Hz), 

band 3 (8–15 Hz), and band 4 (15–30 Hz) [2,23] . 

2.2.1. Amplitude features. Discrete EEG signal x ( n ) was bandpass fil- 

tered using a 5th-order Butterworth filter into the i th frequency 

band ( i = 1 , 2 , 3 , 4 ) to produce x i ( n ). These filters implement the 

forward–backwards procedure to produce a zero-phase filter. We 

calculated signal envelope a i ( n ) of x i ( n ) as 

a i (n ) = | z i (n ) | 2 = | x i (n ) + j H[ x i (n )] | 2 (1) 

where z i ( n ) is the analytic associate of x i ( n ); H represents the 

Hilbert transform and j represents the imaginary unit of the 

complex-valued z i ( n ). 

2.2.2. Spectral features. Multiple features are used to quantify 

spectral characteristics. Relative spectral power for the i th band is 

estimated as 

P i = 

∑ 

k ∈ i | X (k ) | 2 
P total 

(2) 

where X ( k ) is the discrete Fourier transform (DFT) of length- N x ( n ), 

P total is the total spectral power over the 0.5–30 Hz range, and no- 

tation �k ∈ i represents summation over the i th frequency band. 

To quantify spectral shape, we fit the line 

ˆ Y (k ) = c 1 + c 2 k (3) 

to the log–log spectrum Y ( k ) and then use slope c 2 and measure- 

of-fit r 2 , defined as 

r 2 i = 1 −
∑ 

k ∈ i 
[
Y (k ) − ˆ Y (k ) 

]2 

∑ 

k ∈ i 
[
Y (k ) − 1 

N 

∑ 

k ∈ i Y (k ) 
]2 

, (4) 

as features. This process has some similarity to a multifractal ap- 

proach [24] but differs in the EEG frequency-band selection and 

summary measures. 

Mean frequency is calculated using the periodic-mean fre- 

quency estimate, 

M i = 

f s 

4 π

{ 

arg 

[ 

N/ 2 −1 ∑ 

k =0 

∣∣X i (k ) 
∣∣2 

e j2 πk/N 

] 

mod 2 π

} 

(5) 

with mod 2 π representing the modulus function in 2 π , f s the sam- 

pling frequency, and X i ( k ) is the DFT of x i ( n ). Instantaneous fre- 

quency is calculated using the central-finite difference estimate, 

f i (n ) = 

f s 

4 π

{ 

[ φi (n + 1) − φi (n − 1) ] mod 2 π
} 

(6) 
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