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a b s t r a c t 

The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of 

the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile 

blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but 

also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based 

on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. 

In this study, integrating Ling and Atabek’s local flow theory and Maxwell–Fricke theory, we develop an 

elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conduc- 

tivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary 

factor that affects the conductivity of flowing blood in arteries. 

© 2016 Published by Elsevier Ltd on behalf of IPEM. 

1. Introduction 

Over the past few decades, a number of investigations 

have demonstrated that the electrical conductivity of pulsatile 

blood flow in arteries is an important player for electrical 

impedance measurement system applications in clinical settings 

[1,19,21,24,27] . The changes in blood electrical conductivity are 

reported to mainly result from blood-flow-induced orientation 

and deformation of red blood cells (RBCs) [6,8,18,22] . In addition, 

it has been demonstrated that the characteristics of blood flow, 

e.g., steady flow or pulsatile flow in the artery, are critical in 

determining the electrical conductivity of arterial blood flow. 

The effects of steady flow on the variation in electrical con- 

ductivity of blood have been well documented since the 1970s 

[6,8,18,22] . These researchers found that the change in electri- 

cal conductivity is primarily influenced by the orientation and 

deformation of RBCs; both are determined by fluid shear stress 

during steady flow [13,23] . Then, Gaw et al. [9–11] first reported 

the impact of pulsatile blood flow on electrical conductivity in a 

straight rigid model using the Womersley theory [28] . This study 

also found that the variation in electrical conductivity is affected 

by RBC orientation and deformation. The deformation of RBCs is 

determined by shear stress, while the orientation ratio of RBCs is 

determined by the shear rate during pulsatile flow. 
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It should be noted that all of these previous investigations 

were based on the assumption that the arterial wall is rigid 

[9–11,13,17,23] ; however, this is not true under physiological 

conditions. In in vivo arteries, arterial walls undergo elastic defor- 

mations. The interaction between wall motion and pulsatile blood 

flow may lead to significant nonlinear effects on pulsatile blood 

flow and shear stress [2,4,14,15,25,26,29] ; this interaction definitely 

influences RBC orientation and deformation, thus changing arterial 

electrical conductivity. However, to date, the quantitative relation- 

ship between electrical conductivity, wall motion, and pulsatile 

blood flow dynamics still remains elusive. 

In this paper, we attempt to explore the relationship between 

electrical conductivity, wall motion, and pulsatile blood flow dy- 

namics by proposing an elastic tube model and analyzing the ef- 

fect of wall motion on pulsatile blood flow and arterial pulsatile 

blood flow conductivity. The elastic tube model integrates Ling and 

Atabek’s ‘local flow theory’ [15] and the Maxwell–Fricke theory 

[7] and focuses on the orientation and deformation of ellipsoidal 

particles induced by shear stresses [9–11,13] . Moreover, particular 

attention is paid to clarifying the contribution of the arterial radius 

as well as the axial center-line velocity to blood conductivity; these 

can easily be measured by the Doppler ultrasonic technique [16] . 

2. Proposed elastic tube model 

This section first presents a proposed elastic tube model for 

the electrical conductivity of arterial pulsatile blood flow. Then, 

we model the conductivity changes as functions of wall motion, 
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blood-flow-induced RBC orientation and deformation and finally 

give the equations and numerical simulation methods. 

2.1. Elastic tube model and equations 

2.1.1. Pulsatile blood flow dynamics 

Pulsatile blood flow in a straight and circular artery can be 

modeled as a homogeneous, incompressible Newtonian fluid 

flow in an isotropic, thin-walled, elastic tube with a longitudinal 

constraint. The continuity and Navier–Stokes equations governing 

pulsatile blood flow can be simplified as follows [2,15,25,28] 
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where u and v denote the axial velocity and radial velocity, re- 

spectively; p is blood pressure; ρ and η denote the density and 

viscosity of blood, respectively; t is a symbol of time; x and r are 

the longitudinal and radial coordinates, respectively; and R is the 

arterial inner radius. 

By introducing a relative radial coordinate y = r / R into Eq. (1) , 

the axial velocity in the straight artery has the following radial 

distribution 
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Let us introduce Ling and Atabek’s ‘local flow theory’ [15] , that 

is, assuming that a small variation in x does not change the shape 

of the axial velocity profiles, the longitudinal gradient of the axial 

velocity u satisfies: 

∂u 

∂x 
= f (x, t) · | u (x, y, t) | (6) 

Thus, by introducing Eq. (6) into Eq. (2) , the radial velocity can 

be expressed as follows: 
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In Eq. (7) , ∂R 
∂x 

can be expressed by 
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where ∂R 
∂ p 

is determined by the arterial elastic properties and 

geometry of the arterial partial zero-stress state that can be 

measured by the pressure waveform p ( t ) and radius waveform R ( t ) 

using a Doppler ultrasonic instrument. 

The pressure gradient can be derived from Eqs. (5) –(8) , as 

follows [5] : 
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where u c is the center-line blood velocity at y = 0. 

The radial velocity v can be deduced from Eqs. (7) –(9) , as 

follows: 
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The axial velocity u and radial velocity v can be deduced from 

Eqs. (5) , (9) and (10) . Then, the axial shear stress τrx and radial 

shear stress τr r are expressed as: 
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η

R 

· ∂u 

∂y 
(11) 

τrr = 2 · η
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Because the radial shear stress τr r is far smaller than the axial 

shear stress τrx , i.e., τr r < <τrx , the total shear stress τ at time t is 

approximated as: 

τ ≈ τrx = 

η

R 

· ∂u 

∂y 
(13) 

For the special case when wall motion is ignored, the elastic 

tube model is degenerated as a rigid tube model. The shear stress 

τrg in the rigid tube model is then expressed as follows (after 

[16] ): 

τrg ( y, t ) = 
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where n is the harmonic number; J 0 and J 1 are the 0th-order and 

1th-order Bessel functions of the first kind, respectively; j = 

√ −1 ; 

R is the time-averaged arterial inner radius over one cardiac 

cycle; αn = R̄ 
√ 

ρω n /η is the Womersley number; ω n =2 n π f is the 

angular frequency; f is the base frequency; and u (0, ω n ) is the n th 

harmonic component of the measured center-line velocity u c (t) 

and satisfies 

u c (t) = 
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n = −∞ 

u (0 , ω n ) e 
j ω n t (15) 

Eqs. (14) and (15) describe the relationship between the shear 

stress τrg and center-line velocity u c (t) in the rigid tube model. 

Once the center-line velocity u c (t) and time-averaged radius R are 

given, the frequency components u (0, ω n ) of u c (t) are calculated by 

Eq. (15) , and the shear stress τrg is then calculated using Eq. (14) . 

2.1.2. Conductivity of blood 

In this study, flowing blood with insulating RBCs is modeled as 

a flowing insulating suspension with ellipsoidal particles. The bulk 

conductivity σ bl ( t ) of flowing blood is calculated as follows (after 

[11,13] ): 

σbl ( t ) = 

2 

R̄ 

2 
·
∫ R 

0 

σc ( r, t ) rd r (16) 

where σ c ( r , t ) is the conductivity of blood at any radial coordinate 

r that can be calculated by the Maxwell–Fricke Eq. [7] : 

σc 

σp 
= 

1 − H 

1 + ( C − 1 ) · H 

(17) 

where σ p is the conductivity of the plasma; H is the haematocrit 

expressed as the volume fraction of RBCs relative to the total 

blood volume; and C is a factor that depends on the geometry and 

orientation of the RBC and is affected by shear stress. 

The expressions for factor C can be found in the literature 

[3,11,13] . For an easy reference, these expressions are also pre- 

sented as follows: 

C = f ( r ) · C b + ( 1 − f ( r ) ) · C r (18) 
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