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a  b  s  t  r  a  c  t

We apply  the  generalized  reinforcement  (GR)  learning  protocol  to the stag  hunt  game.  GR
learning  combines  positive  and  negative  reinforcement.  The  GR  learning  rule  generates  the
GR  dynamic,  which  governs  the  evolution  of  the mixed  strategy  of  agents  in  the  population.
We  identify  conditions  under  which  the  GR  dynamic  converges  globally  to  one  of  the  two
pure strategy  Nash  equilibria  of the game.
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1. Introduction

This note considers equilibrium selection in the stag hunt game under the generalized reinforcement (GR) learning
protocol introduced by Lahkar and Seymour (2014). Equilibrium selection, particularly selection of the Pareto efficient
equilibrium, in coordination games like the stag hunt has been a topic of significant interest (Skyrms and Pemantle, 2000;
Skyrms, 2003). GR learning combines the ideas of the Cross rule of positive reinforcement (Cross, 1973) with negative
reinforcement. As in Lahkar and Seymour (2014), we  consider a population of agents who  use mixed strategies to select an
action in the stag hunt game.1 Following Börgers and Sarin (1997), we interpret positive payoffs as representing satisfaction
of a common exogenous aspiration level of zero, which then increases the probability of the current action through Cross
positive reinforcement. However, unlike Börgers and Sarin (1997) where all payoffs are positive, we also allow for payoffs
to not satisfy aspiration and, hence, be negative. A negative payoff reduces the probability of the current action through
negative reinforcement. As shown in Lahkar and Seymour (2014), such GR learning, when applied to a large population
of agents, induces the GR dynamic, which is a deterministic ODE system and which describes the evolution of the mixed
strategy of all agents.

We  establish two equilibrium selection results. Proposition 3.1 characterizes conditions under which the Pareto efficient
stag equilibrium is globally asymptotically stable in our model. For such selection, we  require that the payoff at the inferior
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1 We consider a stag hunt game with the assumption u11 > u21 = u22 > u12, where action 1 is stag and action 2 hare. The GR dynamic depends upon the
sign  of the payoffs. Hence, the restriction u21 = u22 reduces the number of cases we  need to consider. But our methodology extends to all two–action games.
That  would require considering all possible cases of the dynamic depending upon the sign of payoffs.
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hare equilibrium be negative and the stag equilibrium payoff be positive and sufficiently high, in fact higher than the loss
from a (stag,hare) miscoordination. This result depends upon the key property that due to negative reinforcement, no pure
strategy state, including a Nash equilibrium, can be a rest point of the GR dynamic. Hence, negative payoff at the hare
equilibrium pushes the GR dynamic away while the sufficiently high and positive payoff at the stag equilibrium makes it
globally attracting. On the other hand, Proposition 3.2 establishes conditions under which the hare equilibrium is (almost)
globally asymptotically stable. This requires the hare equilibrium payoff to be positive and the loss from the (stag,hare)
miscoordination to be higher than the difference in equilibrium payoffs. Intuitively, this would imply that the hare action
satisfies aspiration while the stag action is sufficiently risky.

The fundamental concept behind aspiration based reinforcement learning, both positive and negative, has its origins
in the psychology literature (Estes, 1950; Bush and Mosteller, 1951, 1955). The idea of extending such aspiration based
behavioral models to economics and game theory was first proposed by Sauermann and Selten (1962).2 Among the first
formal model of reinforcement learning in economics is Cross (1973), which modified Bush and Mosteller’s (1955) original
reinforcement learning rule by incorporating the possibility that the increase in the probability of an action can depend upon
the payoff from that action. Börgers and Sarin (1997) applied the Cross (1973) rule in a game theoretic context.

We note that in reinforcement learning, payoffs are not to be interpreted as von Neumann–Morgenstern utilities, for
which, the distinction between positive and negative values is meaningless. Börgers and Sarin (1997) interpret these payoffs
as reinforcement stimuli. Our model, however, involves the comparison of the magnitude of payoffs and hence, require some
cardinal interpretation. One way to get around this difficulty is to interpret payoffs as physical quantities of, for example,
food, above or below the aspiration level.3 We  maintain this interpretation throughout this note. We  recognize that this
narrower interpretation of payoffs restricts the scope of the results obtained here in comparison to equilibrium selection
results in other models where the standard interpretation of von Neumann–Morgenstern utilities holds.

The rest of the note is as follows. Section 2 introduces the model. Section 3 presents the results on equilibrium selection.
Section 4 concludes with a discussion of the related literature.

2. The model

We  consider a population consisting of a continuum of agents. Agents in the population are randomly matched to play a
2 × 2 symmetric normal game with the action set A  = {1, 2}. We  use uij to denote the payoff of an agent who  uses action i
and is matched against an agent who uses action j, i, j ∈ A. As in Lahkar and Seymour (2014), we assume that uij ∈ [−1, 1].
We further assume that

u11 > u21 = u22 > u12. (1)

With (1), the normal form game under consideration becomes the stag hunt game with action 1 representing “stag” and
action 2 representing “hare”. We  denote the stag hunt game with the payoff matrix

U =
(

u11 u12

u2 u2

)
, (2)

where, to simplify notation, we have used u2 to denote u21 = u22.
Agents in the population update their strategies using the GR learning rule (Lahkar and Seymour, 2014). To describe GR

learning, denote u+
ij

= max{uij, 0} and u−
ij

= min{uij, 0}. Further, denote as � = {x ∈ R2 : xi ≥ 0 for each i ∈ A, with x1 + x2 =
1} the set of mixed strategies of an agent, with xi representing the probability of playing action i. All agents are matched in
pairs at time t to play the game. Matchings last for a time period � > 0, after which they are rearranged randomly. Hence, at
time t + �, each agent is (almost surely) matched with a new opponent.

During each matching, an agent uses a mixed strategy to select an action. The agent then commits to that action throughout
the duration of that matching. Suppose an agent selects action i and receives payoff uij in the current matching. Then, in the
next matching, which is with a new opponent, the agent revises his strategy to x′ = x + �fij(x), where fij : R2 → R2 defines the
GR learning rule

fij,i(x) = u+
ij

(1 − xi) + u−
ij

xi, (3)

fij,k(x) = −u+
ij

xk − u−
ij

xi, k /= i, (4)

for i, j ∈ A.4

2 Selten (1998) provides a discussion of the original material in Sauermann and Selten (1962), which was  in German, in English.
3 This interpretation, for example, allows us to admit the assumption u21 = u22 as implying that a hunter in the stag hunt game obtains equal amount of

food  by playing the hare action irrespective of the opponent’s action.
4 The assumption that uij ∈ [−1, 1] ensures that x + �fij(x) is a probability distribution. Further, (3) and (4) are a restriction of the more general n−action

GR  rule in Lahkar and Seymour (2014) to the n = 2 case.



Download English Version:

https://daneshyari.com/en/article/5034643

Download Persian Version:

https://daneshyari.com/article/5034643

Daneshyari.com

https://daneshyari.com/en/article/5034643
https://daneshyari.com/article/5034643
https://daneshyari.com

