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Brain states dynamically changewith learning and these changes varywidely among individuals. Recent research
proposes that electrophysiological measures of brain states can also predict individual variability in successful
learning. This studywas conducted to examine neuralmechanisms of learning and neurophysiological indicators
that predict success in a perceptual learning task. EEGwas recordedover 20 blocks of trialswhile subjects learned
to categorize a complex visual stimulus that required integration of multiple physical dimensions for successful
categorization. For the analysis, final performance scores were used to median split subjects into high and low
learners. By the 6th block, high learners began to diverge, eventually achieving 80% accuracy while low learners
remained only nominally above chance. ERPs to the visual stimulus revealed a P3b that was significantly larger in
high learners even before performance differences had emerged, but that did not varywith learning. Power spec-
tral analyses showed that resting-state alphawas larger for high learners both before and during learning. Finally,
alpha power increased for high but not for low learners as learning progressed. These results show that electro-
physiological measures, especially alpha power,may not just reflect the learning process but also serve as predic-
tors of eventual learning performance.
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1. Introduction

Learning is a fundamental cognitive activity the principle result of
which is ultimately a change in the way a person responds to the
environment. Learning itself represents a broad category of investiga-
tion which is often characterized by the kind of information learned
(e.g. perceptual learning) or the process by which learning is achieved
(e.g. implicit learning). Perceptual learning can be defined as an
improvement in the ability to perceive which is achieved through
repeated sensory experience. It is a form of implicit learning, in which
learners often cannot easily verbalize how and what it is that they
learned. However, despite intact sensory and cognitive function there
is still a large amount of variability in perceptual learning among
individuals, with some showing great success and others little to no
learning. While much research has shown that learning is a process
that ultimately affects brain function and organization, recent electro-
physiological work has suggested a possible explanation for observed
individual differences in perceptual learning. Namely, the brain
state the learner brings to the task itself can also affect learning by
facilitating or hindering the learning process. These studies have

recorded changes in brain states associated with the learning process
and remarkably, predicted learning well before performance evidence
of this learning was apparent (Freyer, Becker, Dinse, & Ritter, 2013;
Mathewson et al., 2012).

In the present study, we examine changes in measures of brain
states, specifically the electroencephalogram (EEG) and event-related
potentials (ERP), as subjects gained (or not) proficiency in a percep-
tual categorization task. The ongoing electrical activity of the brain,
the EEG, consists of a series of oscillations with different frequencies
and amplitudes that vary based on mental state. ERPs are minute
changes in the EEG that are elicited by an external physical stimulus
or internal cognitive events. The ERP waveform consists of a series
of negative- and positive-going components shown to reflect differ-
ent aspects and stages of information processing and vary based on
the extent of processing. Both EEG oscillations and ERP waveforms
exhibit considerable individual differences in their fluctuations
and patterns, and it is conceivable that learning variability could in
part be related to these particular brain signatures. Although most
electrophysiological studies of learning have focused on changes
after learning is complete, such an approach cannot reveal how
electrophysiological activity dynamically changes to reflect im-
provements in perceptual performance or whether a pre-existing
neurological disposition can affect performance. In order to do so it
is necessary to track brain activity throughout the entire learning
process.
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1.1. EEG oscillations

Of particular importance to learning is the 8–12 Hz alpha oscillation,
discovered in the very first EEG recordings from the human scalp when
subjectswere resting, with their eyes closed (Berger, 1929). Early inves-
tigations noted that simply opening the eyes can cause a marked atten-
uation (or desynchronization) of alpha and for this reason, many
concluded that alpha reflected an “idling” state during which the cortex
is not engaged in a task (see Pfurtscheller, Stancák, & Neuper, 1996 for a
review). By contrast, high attention and vigilance is associated with low
alpha power (Thut, 2006). The functional role of alpha is however still
debated and recent work has suggested that changes in alpha rhythm
cannot simply be explained by global fluctuations of attention or vigi-
lance. Instead, an inhibition role has been emphasized, with alpha
power reflecting a top-down inhibition of processes that are not rele-
vant to the task (Jensen & Mazaheri, 2010; Klimesch, Sauseng, &
Hanslmayr, 2007; Sigala, Haufe, Roy, Dinse, & Ritter, 2014). Considering
the complexity of the alpha rhythm, alpha may have different roles de-
pending on the specifics of the task.

Changes in alpha activity have recently been intimately linked to
both short- and long-term learning. Hamamé, Cosmelli, Henriquez,
and Aboitiz (2011) employed a complex visuo-spatial search task, and
trained subjects on this task for a 1 h session each day over 5 days. Dur-
ing the presentation of the visual stimuli, alpha power gradually de-
creased, as would be expected with active processing of the complex
stimulus changes. Desynchronization however dissipated over the last
two training sessions and alpha power thus increased as training
progressed. The alpha enhancement would be consistent with success-
ful learning and the need for less attention and resources to be devoted
to the task. Similarly, Bays, Visscher, Le Dantec, and Seitz (2015)
employed a complex visuo-spatial search task and found evidence of
an increase in alpha power following learning. Subjects were trained
on this task for 1 h/day over an 8 day period. EEG was recorded on the
first day and one day after the final training session. They found that
the alpha power attenuated following the onset of the visual stimulus
(or alternatively, alpha desynchronization increased) with training on
the task. Furthermore, they found that training resulted in increased
alpha power during the pre-stimulus period, a 1 s period prior to the
onset of the stimulus. Again, this later effect may be related to the grad-
ual automaticity of processing associated with efficiency in the learning
of the task. Freyer et al. (2013) employed a somatosensory perceptual
learning task inwhich subjects passively learned a tactile discrimination
task through repetitive stimulation. Discrimination performance on the
task was greatly improved with stimulation; and importantly, the
higher the alpha power was during a rest period prior to stimulation,
the larger the improvement on task performance after stimulation.
Some studies have also examined brain state correlates of learning dur-
ing continuous learning tasks such as video games. In Maclin et al.
(2011), subjects learned to respond in a complex visual computer
game, and the results showed that an increase in alpha power at central
sites following stimulus presentation was associated with learning. In
another study employing a real-time video game task, Mathewson et
al. (2012) found that those who eventually learned the game well
showed larger alpha power over frontal sites very early in training.

1.2. ERPs

Several studies have examined the effect of learning on early pro-
cessing, as reflected by ERP components occurring shortly after stimulus
presentation and well before actual decision-making. A negative-com-
ponent occurring at about 200 ms after stimulus onset, termed the
N2pc, has been demonstrated to increase in amplitude during visual
search tasks as the subject learns to attend to a relevant feature occur-
ring among many others (An et al., 2012; Hamamé et al., 2011; Qu,
Hillyard, & Ding, 2016). However, this N2pc effect is specific to visual
search tasks and is not known to generalize to other types of learning.

A few studies have investigated another candidate ERP as a correlate
of learning; this ERP, the P3, has been the subject of a considerable num-
ber of studies. It was first described by Sutton, Braren, Zubin, and John
(1965) as occurring following the detection of a rare, task relevant stim-
ulus. Its latency can occur as early as 300ms (and for this reason, is also
often called P300) when targets are easily discriminable but typically
occurs from 400 to 600 ms in more difficult and complex tasks.

The amplitude of P3 has often been associated with the updating of
working memory.1 The learning process obviously requires the
updating of memory based on feedback about the correctness of the de-
cisions. Barceló (2003) employed a modified Wisconsin card sorting
task in which subjects had to learn the correct concept appearing on
the card through a trial-and-error process. They examined ERP compo-
nents time-locked to the perception of the cards to-be-categorized, and
changes associated in this perception as learning progressed. Although
the correct categorization could be learned within a few trials, they
noted that a small positivity, that they termed the P3a, occurring at
about 200mswas larger, albeit non-significantly, on stay (keep the con-
cept) than shift (change the concept) trials. On the other hand, a later,
parietal maximum positivity, that they termed P3b, occurring from
400 to 800 ms was significantly larger on stay than shift trials. Thus, as
the concept was gradually learned, the amplitude of the P3b became
larger. In the Hamamé et al. (2011) task involving long-term learning
of complex visuospatial features, a P3b was observed to both equally
probable targets (containing the key feature) and nontargets. This P3b
also gradually increased in amplitude as subjects learned the discrimi-
nation over five days. Maclin et al. (2011) and Mathewson et al.
(2012) also recorded a P3b to task relevant visual stimuli contained
within a complex computer game. However, the P3b proved to be
only a weak predictor of individual improvement in video game perfor-
mance, although the authors noted that this may be due to latency jitter
related to the timing of the stimulus presentation associated with re-
cording in a continuous real-world task.

1.3. The present study

Perceptual categorization tasks provide an idealmethodological par-
adigm for the study of perceptual learning in a discrete trial context. In
such tasks, subjects learn to classify perceptual stimuli, typically visual,
into two or more categories over the course of hundreds of trials. The
stimuli are constructed to vary across 2 or more physical dimensions
and require subjects to integrate the dimensions for proper classifica-
tion. The task can be cognitively complex, produces gradual learning,
and likemany real world learning situations is implicit (i.e., procedural)
as subjects are usually not able to adequately verbalize the rule learned
to classify the stimuli. An additional, but important, characteristic of
perceptual learning in categorization tasks is that they often accommo-
date a wide variety of individual differences in both asymptotic perfor-
mance and in rate of learning (see Ashby, Ell, & Waldron, 2003;
Zeithamova & Maddox, 2007). The present study records EEG and
ERPs while subjects engage in a visual perceptual categorization task.
The task was piloted and adapted in such a way to be very difficult,
and produce considerable learning variability among individuals.
Based on previous studies, it was expected that the P3 elicited by the vi-
sual stimuli would become more prominent as subjects improved their
task performance. It was also expected that the EEG, in particular the
alpha activity, evoked during the pre-stimulus resting periods would
predict eventual success in learning the task.

1 Because of its association with decision-making, Stelmack and colleagues have fre-
quently employed P3 in their studies of individual differences in cognitive abilities (see
for example, McGarry-Roberts, Stelmack, & Campbell, 1992; Beauchamp & Stelmack,
2006; Sculthorpe, Stelmack, & Campbell, 2009).
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