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Scenario discovery is amodel-based approach to scenario development under deep uncertainty. Scenario discov-
ery relies on the use of statistical machine learning algorithms. Themost frequently used algorithm is the Patient
Rule InductionMethod (PRIM). This algorithm identifies regions in an uncertainmodel input space that are high-
ly predictive of model outcomes that are of interest. To identify these regions, PRIM uses a hill-climbing optimi-
zation procedure. This suggests that PRIM can suffer from the usual defects of hill climbing optimization
algorithms, including local optima, plateaus, and ridges and valleys. In case of PRIM, these problems are even
more pronounced when dealing with heterogeneously typed data. Drawing inspiration from machine learning
research on random forests, we present an improved version of PRIM. This improved version is based on the
idea of performing multiple PRIM analyses based on randomly selected features and combining these results
using a bagging technique. The efficacy of the approach is demonstrated using three cases. Each of the cases
has been published before and used PRIM. We compare the results found using PRIM with the results found
using the improved version of PRIM. We find that the improved version is more robust to new data, can better
cope with heterogeneously typed data, and is less prone to overfitting.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Scenario discovery (Bryant and Lempert, 2010) is an approach for
addressing the challenges of characterizing and communicating deep
uncertainty associated with simulation models (Dalal et al., 2013).
Deep uncertainty is encountered when the different parties to a
decision do not know or cannot agree on the systemmodel that relates
actions to consequences, the exogenous inputs to the system model
(Lempert et al., 2003). Decision problems under deep uncertainty
often involve decisions that are made over time in dynamic interaction
with the system (Hallegatte et al., 2012). When confronted by deep un-
certainty, it is possible to enumerate the possibilities (e.g. sets of model
inputs, alternative relationships inside a model), without ranking these
possibilities in terms of perceived likelihood or assigningprobabilities to
them (Kwakkel et al., 2010). Scenario discovery addresses the challenge
posed by deep uncertainty by exploring the consequences of the various
deep uncertainties associated with a simulation model through
conducting a series of computational experiments (Bankes et al.,
2013). The resulting data set is subsequently analyzed using statistical
machine learning algorithms in order to identify regions in the uncer-
tainty space that are of interest (Bryant and Lempert, 2010, Kwakkel
et al., 2013). These identified regions, which are typically characterized
by only a small subset of the deeply uncertain factors, can subsequently

be communicated to the actors involved in the decision problem. Pre-
liminary experiments with real world decisionmakers suggest that sce-
nario discovery results are decision relevant and easier to interpret for
decision makers than probabilistic ways of conveying the same
information (Parker et al., 2015).

Currently, the main statistical rule induction algorithm used for
scenario discovery is the Patient Rule Induction Method (PRIM)
(Friedman and Fisher, 1999). PRIM can be used for data analytic
questions, where the analyst tries to find combinations of values for
input variables that result in similar characteristic values for the out-
come variables. Specifically, PRIM identifies one or more of hyper rect-
angular subspaces of the model input space within which the values
of a single output variable are considerably different from its average
values over the entiremodel input space. These subspaces are described
as hyper-rectangular boxes of the model input space. To identify these
boxes, PRIM uses a non-greedy, or patient, and hill climbing optimiza-
tion procedure.

There are two key concernswhen using PRIM for scenario discovery.
The first concern is the interpretability of the results. Ideally the
subspaces identified through PRIM should be composed of only a
small subset of the uncertainties considered. If the number of uncer-
tainties that jointly define the subspace is too large, interpretation of
the results becomes challenging for the analyst (Bryant and Lempert,
2010). But, perhaps even more importantly, communicating such re-
sults to the stakeholders involved in the process becomes substantially
more challenging (Parker et al., 2015). The second concern is that the
uncertainties in the subset should be significant. That is, PRIM should
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only include uncertain factors in the definition of a subspace that are
truly predictive for the characteristic values of the outcome variable.
This concern is particularly important given that PRIM uses a lenient
hill climbing optimization procedure for finding the subspaces. As
such, PRIM suffers from the usual defects associated with hill climbing.
The main defect is that hill climbing can only find a local optimum.
Moreover, PRIM can get stuck on a plateau where the performance
does not change resulting in an early stop of the optimization. PRIM
can also get stuck by ridges and valleys which prevent the hill climbing
algorithm from further improving the performance. Together, these de-
fects imply that theremight exist boxes that offer a better description of
the data, but which cannot be found by the hill climbing optimization
algorithm.

In current scenario discovery practice, the interpretability concern is
addressed primarily by performing PRIM in an interactive manner. By
keeping track of the route followed by the lenient hill climbing optimi-
zation procedure used in PRIM, the so-called peeling trajectory, a man-
ual inspection can reveal how the number of uncertainties that define
the subspace varies as a function of density (precision) and coverage
(recall). This allows for making a judgment call by the analyst balancing
interpretability, coverage, and density. To avoid the inclusion of spuri-
ous uncertainties in the subset, Bryant and Lempert (2010) propose a
resampling procedure and a quasi-p-values test. This resampling test
assesses how often essentially the same subspace is found by running
PRIM on randomly selected subsets of the data. The quasi-p-value test,
essentially a one sided binomial test, is an estimate of the likelihood
that a given uncertainty is included in the definition of the subspace
purely by chance.

In this paper, we investigate an alternative approach that addresses
the interpretability concern and the significance concern simultaneous-
ly. This alternative approach is inspired by the extensive work that has
been done with Classification and Regression Trees (CART) (Breiman
et al., 1984) and related classification tree algorithms. The basic idea
behind this alternative is to perform multiple runs of the PRIM
algorithm based on randomly selected features (Breiman, 2001) and
combining these results using a bagging technique (Breiman, 1996).
The resulting algorithm is known as random forest (Breiman, 2001).
The idea of random feature selection is that all the data is used, but
rather than including all uncertainties as candidate dimensions, only a
randomly selected subset is used. So, instead of repeatedly running
PRIM on randomly selected data as currently done in the resampling
procedure suggested by Bryant and Lempert (2010), this random
feature selection procedure randomly selects the uncertainties instead.
Bagging is an established approach in machine learning for combining
multiple versions of a predictor into an aggregate predictor (Breiman,
1996). The expectation is that this random boxes approach will outper-
form normal PRIM, analogous to how a random forest outperforms a
single classification tree.

To demonstrate the proposed approach and assess its efficacy
compared to the normal use of PRIM in the context of scenario
discovery, we apply it to three cases. In particular, we apply it to
the same data as used in the paper of Bryant and Lempert (2010) in
which Scenario Discovery was first proposed, the case study of
Rozenberg et al. (2013), and the case used by Hamarat et al.
(2014). The first case covers continuous uncertain factors, the
second case covers discrete uncertain factors, and the third case
has continuous, discrete, and categorical uncertain factors. This
allows for a comparison between the original algorithm and the
proposed approach across cases with differently typed uncertain
factors.

The remainder of this paper is structured accordingly. In Section 2,
we preset a review of the scenario discovery literature. In Section 3,
we outline the method in more detail. More specifically, we introduce
PRIM in Section 3.1, random forests in Section 3.2, and the combined ap-
proach in Section 3.3. Section 4 contains the results. We discuss the re-
sults in Section 5. Section 6 contains the conclusions.

2. Prior research

Scenario discovery was first put forward by Bryant and Lempert
(2010). Their work builds on earlier work on the use of PRIM and
CART in the context of Robust Decision Making (Lempert et al., 2006;
Groves and Lempert, 2007, Lempert et al., 2008). Scenario discovery
forms the analytical core of Robust Decision Making (Walker et al.,
2013). Many examples of the use of scenario discovery in the context
of Robust Decision Making can be found in the literature (Lempert
et al., 2006; Lempert and Collins, 2007, Dalal et al., 2013; Hamarat
et al., 2013; Matrosov et al., 2013a, 2013b; Auping et al., 2015; Eker
and van Daalen, 2015). Robust Decision Making aims at supporting
the design of policies that perform satisfactory across a very large en-
semble of future states of the world. In this context, scenario discovery
is used to identify the combination of uncertainties under which a can-
didate policy performs poorly, allowing for their iterative improvement.
The use of scenario discovery for Robust Decision Making suggests that
it could also be used in other planning approaches that design plans
based on an analysis of the conditions under which a plan fails to
meet its goals (Walker et al., 2013). Specially, Kwakkel et al. (2015)
and Kwakkel et al. (2016) suggest that the vulnerabilities identified
through scenario discovery can be understood as a multi-dimensional
generalization of adaptation tipping points (Kwadijk et al., 2010),
which are a core concept in the literature on dynamic adaptive policy
pathways (Haasnoot et al., 2013).

Increasingly, scenario discovery is usedmore general as a bottomup
model-based approach to scenario development. (Gerst et al., 2013;
Kwakkel et al., 2013; Rozenberg et al., 2013; Halim et al., 2015;
Greeven et al., 2016). There exists a plethora of scenario definitions, ty-
pologies, and methodologies (Bradfield et al., 2005; Börjeson et al.,
2006). Broadly, three schools can be distinguished: the La Prospective
school developed in France; the Probabilistic Modified Trends school
originating at RAND; and the intuitive logic school typically associated
with thework of Shell (Bradfield et al., 2005; Amer et al., 2013). Scenar-
io discovery can be understood as a model-based approach to scenario
development belonging to the intuitive logic school (Bryant and
Lempert, 2010).

Scenario discovery aims to address several shortcomings of other
scenario approaches. First, the available literature on evaluating
scenario studies has found that scenario development is difficult if the
involved actors have diverging interests and worldviews (van ‘t
Klooster and van Asselt, 2006, European Environmental Agency, 2009,
Bryant and Lempert, 2010). Rather than trying to achieve consensus,
facilitate a process of joint sense-making to resolve the differences
between worldviews, or arbitrarily imposing one particular worldview,
scenario discovery aims at making transparent which uncertain factors
actually make a difference for the decision problem at hand. An
illustration of this is offered by Kwakkel et al. (2013) who capture two
distinctmentalmodels of how copper demands emerges in two distinct
System Dynamics models and apply scenario discovery to both models
simultaneously. Similarly, Pruyt and Kwakkel (2014) apply scenario
discovery to three models of radicalization processes, which
encapsulates three distinct mental models of how home grown
terrorists emerge.

Another shortcoming identified in the evaluative literature is that
scenario development processes have a tendency to overlook surprising
developments and discontinuities (van Notten et al., 2005; Goodwin
and Wright, 2010, Derbyshire and Wright, 2014). This might be at
least partly due to the fact that many intuitive logic approaches move
from a large set of relevant uncertain factors to a smaller set of drivers
or megatrends. The highly uncertain and high impact drivers form the
scenario logic. In this dimensionality reduction, interesting plausible
combinations of uncertain developments are lost. In contrast, scenario
discovery first systematically explores the consequences of all the rele-
vant factors, and only then performs a dimensionality reduction in light
of the resulting outcomes — thus potentially identifying surprising
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