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a b s t r a c t

This paper reviews and offers tutorials on robust statistical methods relevant to clinical and experimental
psychopathology researchers. We review the assumptions of one of the most commonly applied models
in this journal (the general linear model, GLM) and the effects of violating them. We then present evi-
dence that psychological data are more likely than not to violate these assumptions. Next, we overview
some methods for correcting for violations of model assumptions. The final part of the paper presents 8
tutorials of robust statistical methods using R that cover a range of variants of the GLM (t-tests, ANOVA,
multiple regression, multilevel models, latent growth models). We conclude with recommendations that
set the expectations for what methods researchers submitting to the journal should apply and what they
should report.

© 2017 Elsevier Ltd. All rights reserved.

1. Overview

The general linear model (GLM), which is routinely used in
clinical and experimental psychopathology research, was once
thought to be robust to violations of its assumptions. However,
based on hundreds of journal articles published during the last fifty
years, it is well established that this view is incorrect. Moreover,
modern methods for dealing with the violations of these assump-
tions can result in substantial gains in power as well as a deeper,
more accurate and more nuanced understanding of data. We begin
with an overview of the key assumptions underlying the GLM. We
then review various misconceptions about how robust the GLM is
to violations of those assumptions and look at the effects that vi-
olations can have. We end the first section by looking at the evi-
dence that psychological data, in general, are likely to violate the
assumptions of the GLM.

In part 2 of the paper we overview a selection of ways to deal
with violations of assumptions that fall under the headings of data
transformation, adjustments to standard errors, and robust

estimation. In the final part, we present 8 tutorials that use datasets
relevant to this journal to show how to implement a selection of
techniques (robust estimators for model parameters and standard
errors) for designs common to this journal (comparing dependent
and independent means, predicting continuous outcomes from
continuous predictors and longitudinal designs).

2. The assumptions of the general linear model

2.1. Critical assumptions

Psychology researchers (generally) and those with interests in
psychopathology (specifically) typically apply variants of the gen-
eral linear model to their data. In this model, an outcome variable
(Y) is predicted from a linear and additive combination of one or
more predictor variables (X). For each predictor there is a parameter
that is estimated from the data (bb) that represents the relationship
between the predictor and outcome variable if the effects of other
predictors in the model are held constant. There is a parameter (the
constant, bb0) to estimate the value of the outcome when all pre-
dictors are zero. The error in prediction is represented by the re-
sidual (εi), which is (for each observation, i) the distance between
the value of the outcome predicted by the model and the value
observed in the data (Eq. (1)). Model parameters (the bbs) are
typically estimated using ordinary least squares (OLS) estimation,
which seeks to minimize the squared errors between the predicted
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and observed values of the outcome, or maximum likelihood (ML)
estimation, which seeks to find the parameter values thatmaximise
the likelihood of the observations.

bY i ¼ bb0 þ bb1X1i þ…þ bbnXni þ εi (1)

It is widely known that the general linear model is a flexible
framework through which to predict a continuous outcome vari-
able from predictor variables that can be continuous (often termed
as ‘regression’ or ‘multiple regression’), categorical (often referred
to as ‘ANOVA’) or both (often referred to as ‘ANCOVA’). Similarly,
experimental designs containing repeated measures and longitu-
dinal data are special cases of a multilevel linear model in which
observations (level 1) are nested within participants (level 2).
Despite the proliferation of terms that create artificial distinctions
in the statistical models being applied, research designs that might,
by many, be labelled as ‘regression’, ‘ANOVA’, ‘ANCOVA’, and
multilevel models, are all variants of the linear model and, there-
fore, have a common set of underlying assumptions (see Cohen,
1968; Field, 2013; 2016, for tutorials).

The linear model has two main assumptions: (1) additivity and
linearity, and (2) spherical residuals. The assumption of spherical
errors implies that residuals are both independent and homosce-
dastic. This assumption is typically examined with respect to these
two implications. Independent residuals are ones that are not
correlated across observations. You would expect this assumption
to be true when each observation comes from a different entity, but
false when observations come from the same entities at different
time points (e.g., longitudinal designs) or from different entities
that share a context relevant to the outcome variable (e.g., clients
being treated by the same clinician, or children taught by the same
teacher). Correlation across residuals is known as autocorrelation.
Homoscedastic residuals are ones that have the same variance for
all observations. Residuals without this property are called
heteroscedastic.

When using the general linear model researchers assume that
Eq. (1) is a valid representation of the real-world process that they
are trying to model. In short, they assume that the outcome var-
iable is linearly related to any predictors and that the best
description of the effect of several predictors is that their indi-
vidual effects can be added together. As such, the assumption of
additivity and linearity is the most important because it equates to
the general linear model being the best description of the process
of interest. If this assumption is not true then you are fitting the
wrong model.

The assumptions of independent and homoscedastic residuals
(i.e., spherical errors) relate to the Guass-Markov theorem, which
states that when these conditions are met (and residuals have a
mean of zero) then the linear model derived from OLS estimation
will be a best linear unbiased estimator. In other words, it will be the
unbiased linear estimator that has the least variance (i.e., is
optimal).1 ‘Unbiased’means that the estimator's expected value for
a parameter matches the true value of that parameter. The conse-
quence of violating either of these assumptions is the same: the
parameter estimates themselves remain unbiased, but are no
longer optimal (that is, you can find estimates with lower variance).

Furthermore, the formula for the variance of a parameter (b) as-
sumes a constant variance so under heteroscedasticity this formula
is incorrect. Consequently, estimates of the standard error of the
parameter (which are based on the variance) are biased (Hayes &
Cai, 2007). The presence of autocorrelation biases the standard
errors of model parameters too.

Biased standard errors have important consequences for sig-
nificance tests and confidence intervals of model parameters. For
example, the test statistic, t, associated with a parameter estimate
in the linear model is calculated using Eq. (2), from which a p-
value is derived. If the standard error of the parameter is incorrect,
then t (and the associated p) will be biased2 and have poor power
(Wilcox, 2010). Similarly, the bounds of a parameter estimates’
confidence interval are constructed by adding or subtracting from
the estimate the associated standard error multiplied by the
quantile of a null distribution associated with the probability level
assigned to the interval. For example, under normality and when
the variance is known, and the goal is to compute a 95% confi-
dence interval for the mean, the standard error of the sample
mean is multiplied by 1.96, the 97.5 percentile of a standard
normal distribution. Therefore, if the standard error is biased, the
confidence interval will be too. Confidence intervals can be
“extremely inaccurate” when the homoscedasticity assumption is
violated (Wilcox, 2010).

tn�p ¼
bbobserved � bbexpected

SEbbobserved

(2)

2.2. Normality

An additional assumption that is often discussed in relation
to the linear model is normality. There are three issues related
to normality, the first of which is normality of residuals (the εi
in Eq. (1)). Each case of data has a residual e the difference
between the predicted and observed values of the outcome. If
you inspected a histogram of these residuals for all cases, you
would hope to see a normal distribution centred around 0. A
residual of 0 means that the model correctly predicts the
outcome value. Therefore, if the residual is zero (or close to it)
for most cases, then the error in prediction is zero (or close to it)
for most cases. If the model fits well, we might also expect that
very extreme over- or underestimations occur rarely. A well-
fitting model then would yield residuals that, like a normal
distribution, are most frequent around zero and very infrequent
at extreme values. This description explains what we mean by
normality of residuals.

The Guass-Markov theorem does not assume normally-
distributed residuals: even if residuals are not normally-
distributed the OLS estimator will yield a model that is the best
linear unbiased estimator (i.e., unbiased and optimal). In this
respect, normality of residuals does not matter. If the residuals are
normally distributed in the population, then the OLS estimator
becomes the ML estimator (that is OLS and ML estimation yield
identical estimates), and it will be the most accurate. That is to say,
when residuals are not normally distributed, parameter estimates
will be unbiased and optimal (with respect to minimizing the
variance), but there may be classes of estimator (other than OLS)
that are more accurate (Wilcox, 2010).

A simple example of this point is the (arithmetic) sample mean,
which is an OLS estimator for the population mean. When the

1 The Guass-Markov theorem shows that the OLS estimates of the slope and
intercept are essentially a weighted mean of the outcome values. When homo-
scedasticity is met the OLS estimator minimizes the expected squared error relative
to other weighted means that might be used. However, there are quite a few robust
regression estimators outside of this class that result in smaller standard errors
when dealing with an error term that is heavy-tailed, even under homoscedasticity
(see Wilcox, 2017). The take home point is that, when using OLS, heteroscedasticity
makes things worse relative to many modern robust methods.

2 A test statistic is biased if the probability of rejecting the null is not minimized
when the null is true.
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