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Latent variable mixture models (LVMMs) are models for multivariate observed data from a potentially
heterogeneous population. The responses on the observed variables are thought to be driven by one or
more latent continuous factors (e.g. severity of a disorder) and/or latent categorical variables (e.g.,
subtypes of a disorder). Decomposing the observed covariances in the data into the effects of categorical
group membership and the effects of continuous trait differences is not trivial, and requires the
consideration of a number of different aspects of LVMMs. The first part of this paper provides the
theoretical background of LVMMs and emphasizes their exploratory character, outlines the general
framework together with assumptions and necessary constraints, highlights the difference between
models with and without covariates, and discusses the interrelation between the number of classes and
the complexity of the within-class model as well as the relevance of measurement invariance. The
second part provides a growth mixture modeling example with simulated data and covers several
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practical issues when fitting LVMMs.
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1. Introduction

Latent variable mixture models (LVMMs) combine latent class
analysis models and factor models or more complex structural
equation models (Muthén, 2001). LVMMs are most commonly used
to investigate population heterogeneity, which refers to the pres-
ence of subgroups in the population. LVMMs can serve to analyse
data from heterogeneous populations without knowing before-
hand which individual belongs to which of the subgroups.

The simplest types of mixture models are latent class analysis
(LCA) models. These models are designed for multiple observed
variables (e.g., symptom endorsements, of questionnaire items),
and have a single latent class variable that groups the individuals in
a sample into a user-specified number of latent groups (Lazarsfeld
& Henry, 1968; McCutcheon, 1987). LCA models do not have factors
within class, and the covariances between the observed variables
within class are constrained to zero.! This is a very stringent
assumption. Suppose we have 5 observed items measuring some
disorder. Not allowing these items to covary within class means
that there are no systematic severity differences between partici-
pants within a class in LCA models. The covariances between
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observed variables in the total sample only deviate from zero due to
mean differences between the classes.

Factor models on the other hand are models for a single ho-
mogeneous population (i.e., no differences between subtypes), and
observed variables in the sample are assumed to covary due to
systematic differences along the underlying continuous latent
factors (Bollen, 1989).

LVMMs can have one or more latent class variables, and permit
the specification of factor models, growth models, or even more
complex models within each class. If the within class model is a
factor model, the resulting LVMM is often called factor mixture
model. Covariances between observed variables in the total sample
are attributed partially to mean differences between classes, and
partially to continuous latent factors within each class. For
example, consider data collected on several questionnaire items
that measure anger. Suppose the population consists of two groups,
a majority group of participants with very low levels of anger and a
smaller group characterized by high scores on most of the items.
The observed anger items in the total sample covary because of the
mean differences between the two groups. In addition, the items
can also covary if there are differences in the severity of anger
within each group. These two sources of covariance are modeled in
LVMMs by using latent categorical and latent continuous variables.

Latent class models are a special case of the LVMM where factor
variances (or, alternatively, factor loadings) are zero. In the anger
example this would mean that all participants within the low-
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scoring class do not differ in the severity of anger (i.e., zero anger
factor variance within group). The same holds for the high scoring
group: the assumption of the latent class model is no variability of
anger within group because if there were systematic anger differ-
ences within class then the items would in fact covary. The
observed covariances between the anger items in this model are
modeled to be entirely due to mean differences between the
groups. Factor models for a homogeneous population are also a
special case: they are LVMMs with a single latent class. In the anger
example this would boil down to neglecting the presence of two
subgroups, and attributing all covariances to one underlying anger
factor within a single homogenous population.

The LVMM framework is extremely flexible, and permits the
specification of different types of mixture models. Models such as
path models, factor models, survival models, growth curve models,
and more general structural equation models can all be specified
for multiple subgroups instead of for a single homogeneous pop-
ulation (see for instance Arminger, Stein, & Wittenberg, 1999;
Dolan & van der Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997;
Muthén & Shedden, 1999; Muthén & Muthén, 2000; Ram &
Grimm, 2009; Varriale & Vermunt, 2012; Vermunt, 2008; Yung,
1997). The flexibility comes at a price. The framework is built on
a set of assumptions that should be realistic for the data. Further, in
order to estimate a model, all relations between observed variables,
between observed variables and latent variables, and between
latent variables have to be specified. It is therefore necessary to
decide whether within-class model parameters are class specific, or
are the same for all classes (i.e., class invariant). As will be discussed
in this paper, the interpretation of the model depends on these
decisions. It is important to note that different within-class
parameterization can influence how many classes best fit the data
(Lubke & Neale, 2008). However, comparing a set of carefully
parameterized mixture models can provide great insight into the
processes and interrelations between variables when the assump-
tion of population homogeneity is unrealistic.

The paper is organized into two main parts. The first part pro-
vides the theoretical background. After discussing the generally
exploratory character of mixture analyses, the modeling framework
is presented together with some of the necessary assumptions and
constraints. The first part concludes with the discussion of issues
that deserve consideration prior to fitting models to data, such as
the interrelation between number of classes and within-class
model complexity, measurement invariance, and models with
and without covariates. The second part consists of a growth
mixture analysis with covariates, and illustrates some of the prac-
tical issues discussed in the first part of the paper.

2. Part 1
2.1. Exploration of heterogeneity using mixture models

Latent variable mixture models (LVMMSs) afford the possibility
to detect groups of subjects in a sample, and to investigate the
differences between the groups. LVMMs differ from other tech-
niques to detect groups in data, such as taxometrics and cluster
analysis, in that they require the user to specify all relations be-
tween observed and latent variables in the model (Lubke & Miller,
2014; Meehl, 1995). LVMMs are therefore prone to mis-
specifications. However, if there is sufficient a priori knowledge to
specify these relations, then LVMMSs usually have more power to
detect groups in the data (Lubke & Tueller, 2010).

LVMMs differ from multi-group models in that it is not neces-
sary to know which subject belongs to which group. Group mem-
bership is unobserved, or latent. Mixture models are therefore
especially useful if the causes of the grouping are not known a

priori. The grouping variable is formalized as a latent categorical
variable, and the groups are called latent classes. In a cross-
sectional setting, classes can consist of subjects with class-specific
response profiles (e.g., high scores on some questionnaire items
but low on others, or high on all), and in a longitudinal setting
classes are characterized by class-specific trajectories over time
(e.g., an increasing risk trajectory and a low constant trajectory).

If the process that causes the grouping is not well understood,
then it is unlikely that the exact number of latent classes or the
within-class structure are known. Mixture analyses are therefore
often rather exploratory in character. Typically, a set of models with
an increasing number of latent classes and different within-class
structures is fitted to the data (e.g., more vs. less constrained
models, see part 2, applied example). Model selection is based on
measures such as the Bayesian Information Criterion (BIC) or the
bootstrapped likelihood ratio test (McLachlan & Peel, 2000;
Schwarz, 1978). Of course there is nothing wrong with explor-
atory analyses, quite the contrary. One can learn a lot from inves-
tigating heterogeneity, and such an analysis can be much more
insightful about the structure in the data than incorrectly assuming
that the data were sampled from a single homogeneous population.
However, the exploratory character of a mixture analysis needs to
be taken into account when best-fitting models are interpreted,
and results need to be validated before specific conceptual con-
clusions concerning the class structure and within-class parame-
ters can be drawn.

2.2. The modeling framework

This section provides a brief overview of the key aspects of the
LVMM framework so that the practical challenges in an empirical
mixture analysis, as illustrated in part 2 of the paper, can be fully
appreciated.

Within the LVMM framework the population can consist of
k=1,..., Klatent classes. If K= 1, then there is only a single class (i.e.
a single homogeneous population). The K = 1 case therefore in-
cludes factor models, structural equation models, and growth
models for a single homogeneous population. In case K > 1, then a
model needs to be specified for each of the classes. These within-
class models are estimated jointly using a mixture distribution. A
mixture distribution is a weighted sum of K component distribu-
tions, and is denoted as

FO) =3 mifi(Y:0) )

where Y is a vector of observed random variables, m, is a weight that
quantifies the relative size of the k™ component, and 0 is a vector of
model parameters for the k™ component (see McLachlan & Peel,
2000, for more detail on mixture distributions). The most com-
mon choice for the component distributions f; is the multivariate
normal distribution, although other distributions such as the
Poisson distribution can be chosen to accommodate non-normal
observed data (e.g., counts of cigarettes, etc.). In case each set of
observed variables within class, Yj, is multivariate normally
distributed, we have Yy ~ MVN(u; =), where the parameter vector
0, contains the parameters that structure the component specific
means, 4, and covariance matrices, Iy :

W= v+ Ap(I— B) ey, (2)
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where vy, are the intercepts, A is the factor loading matrix, I is an
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