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a  b  s  t  r  a  c  t

Accurate  coronary  artery  segmentation  is  a  fundamental  step  in various  medical  imaging  applications
such  as  stenosis  detection,  3D  reconstruction  and  cardiac  dynamics  assessing.  In  this  paper,  a  multiscale
region growing  (MSRG)  method  for coronary  artery  segmentation  in  2D  X-ray  angiograms  is  proposed.
First, a region  growing  rule  incorporating  both  vesselness  and  direction  information  in  a unique  way  is
introduced.  Then  an  iterative  multiscale  search  based  on  this  criterion  is  performed.  Selected  points  in
each step  are  considered  as seeds  for the  following  step.  By  combining  vesselness  and  direction  informa-
tion  in  the  growing  rule,  this  method  is  able  to  avoid  blockage  caused  by  low  vesselness  values  in vascular
regions,  which  in  turn,  yields  continuous  vessel  tree.  Performing  the process  in  a  multiscale  fashion  helps
to  extract  thin and  peripheral  vessels  often  missed  by other  segmentation  methods.  Quantitative  evalu-
ation  performed  on  real angiography  images  shows  that  the  proposed  segmentation  method  identifies
about  80%  of the  total  coronary  artery  tree  in  relatively  easy  images  and  70%  in challenging  cases  with  a
mean  precision  of  82%  and  outperforms  others  segmentation  methods  in  terms  of  sensitivity.  The  MSRG
segmentation  method  was also implemented  with  different  enhancement  filters  and  it has  been  shown
that the  Frangi  filter  gives  better  results.  The  proposed  segmentation  method  has  proven  to  be  tailored
for coronary  artery  segmentation.  It keeps  an  acceptable  performance  when  dealing  with  challenging
situations  such  as  noise,  stenosis  and  poor  contrast.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

X-ray coronary angiography (XCA) is the gold standard for the
assessment of clinically significant coronary artery diseases (CAD)
[1]. The angiograms obtained by the XCA enable to reveal the ini-
tial CAD symptoms by the morphological features of the coronary
arteries such as diameter, length, branching angle, and tortuos-
ity. However, complex vessel structure, image noise, poor contrast
and non-uniform illumination make vessel tracking a tedious task.
Accurate coronary vessel detection is a fundamental step in vari-
ous medical imaging applications such as stenosis detection [2], 3D
reconstruction [3] and cardiac dynamics assessing [4]. Vessel detec-
tion is generally related to two important tasks which are vascular
features enhancement and blood vessel segmentation.

The enhancement step aims to improve the vessels delineation
while reducing background artifacts. So far, a variety of vessel
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enhancement methods have been proposed [5–13]. Truc et al. [14]
distinguish three method classes: linear filtering [15], non-linear
anisotropic filtering [16,17] and Hessian-based multiscale filtering
[5–10].

Linear enhancement methods generally use Gaussian kernels or
Gabor filters in order to denoise images. They are inappropriate to
complex vascular structures since they blur vessel borders as well
as thin vessels.

Unlike the linear smoothing filters, non-linear anisotropic diffu-
sion filtering adjusts the filter for local variations by acting mainly
along the preferred structure direction [16]. Hence, important fea-
tures are better preserved during the smoothing process. Those
filters are widely applied in many image processing tasks such
as fingerprint image filtering [18], optical coherence tomography
image denoising [19] and cell membrane enhancement [20]. The
main drawback of diffusion based methods is that they usually act
at a fixed scale and are therefore unable to detect vessels within a
wide range of size.

Most of the research on vessel enhancement falls into Hessian-
based methods. These methods utilize the second order derivatives
matrix (Hessian matrix) of the image intensity in order to detect
tubular-like structures. For that, the Hessian matrix at each pixel
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is computed by convolving the initial image with second-order
Gaussian derivatives. Then, the Hessian eigenvalues and/or eigen-
vectors are often used to propose a vesselness measure which can
be interpreted as the probability of belonging to a blood vessel of
a pixel. The vesselness generates maximum response at the scale
which matches the diameter of the vessel to be detected. The main
advantage of methods in this category is that they can perform in
a multiscale fashion, thus detecting different sized objects.

In [21], the authors compared four different Hessian-based mul-
tiscale filters, namely those proposed by Koller [5], Sato [6], Frangi
[7] and the vessel enhancing diffusion (VED) filter [17]. VED is a
diffusion filter built upon the Frangi filter. It can be seen as a gen-
eralization of anisotropic diffusion to iteratively smooth the image,
while preserving the vessel structure [17]. This filter was initially
proposed by [22] and extended by Manniesing et al. [17] who added
a smoothness constraint and an enhanced diffusion scheme. Results
of this study showed that the two latter outperform the others
with a better background suppression performance and vascular
structure enhancement.

The second important step in vascular analysis is vessel seg-
mentation. Existing segmentation methods can be divided into two
general categories [23]: skeleton based, and non-skeleton based.
The principle of skeleton-based techniques is the segmentation of
vessels by first detecting the centerlines, then estimating the vessel
width. A typical problem with this class is that it can fail to approx-
imate the vessel segments which present stenosis and bifurcations.
Non-skeleton-based segmentation techniques, on the other hand,
are those that extract the vessels directly. Methods in this category
vary from thresholding [24–26,3], fuzzy clustering [27], mathe-
matical morphology [28,29,13], deformable models such as active
contour and level set [30–33], graph cuts [34–36] to region grow-
ing [37–43]. A more general review on vessel segmentation can be
found in [44,45].

Region-growing has been widely used for image segmentation
[46], and in particular medical image applications such as vessel
extraction. The rationale for this popularity is that these meth-
ods are based on a connectivity assumption, which is naturally
suited to the case of the vascular trees [47,48]. Methods in this class
incrementally segment an object by recruiting neighboring pixel
starting from seed points or regions located inside a vessel based
on some inclusion rule. Defining a robust region growing rule for
X-ray vessel segmentation may  encounter several difficulties such
as image artifacts, lesions, noise and very low contrast between the
vessels and the background particularly in thin vessels location.
Therefore, classical region growing methods based on grey level
values and/or spatial proximity are often sensitive to noise, and
inhomogeneous contrast, which often leads to false negative (hole),
false positive (leakage) and unwanted stop of region-growing
[45].

In coronary artery angiograms, several factors such as image
artifacts, stenosis and noise may  introduce discontinuities, hence
region growing may  result in holes and over-segmentation. To
avoid such problems, the growing process was performed in many
frames of the same sequence in [37]. Although discontinuities may
be avoided by temporal tracking, other difficulties such as center-
line matching and user interaction in each step are necessary in
this approach. Instead of using the intensity feature in the grow-
ing process, authors in [49] incorporate the Frangi vesselness filter
[7] in order to introduce more seed points when the growing pro-
cess stops. In [41], the authors proposed a novel vesselness function
and performed vessels segmentation in two steps. First, large ves-
sels are extracted from the maximum vesselness response by region
growing. However, this final vesselness response given by the max-
imum response among the scale space may  present low values for
thin vessels, junctions and stenosis location. Thus, discontinuities
may  occur if the growing process is applied directly on this final

vesselness image. That is why a detail repairing process is launched
in order to extract thin vessels using a direction information given
by the first directional derivatives i.e. image intensity gradient.

Combining the vesselness function with a directional informa-
tion for vessel tracking is certainly a good idea but the image
gradient is not, in our opinion, the appropriate direction informa-
tion descriptor. A more precise direction descriptor would be given
by the Hessian matrix eigenvectors. This idea was investigated in
[50] where the authors combined the Sato vesselness function [6]
with the line direction information given by the first Hessian eigen-
vector to guide the segmentation of 3D blood vessels. As discussed
in [21], the Sato filter is more sensitive to noise than the Frangi
filter when applied to 2D X-ray angiograms. Fig. 1 shows that back-
ground noise is better removed by the Frangi filter than the Sato
one.

In this paper, a multiscale vessel segmentation method for X-
ray coronary angiography images is presented. This method takes
advantages from multiscale Hessian analysis strength and aims to
overcome the two major problems encountered in region grow-
ing techniques which are the difficulty of detection of poorly
enhanced vessel segments and the occurrence of false positives
[50]. The major contributions of this paper are three-fold: (1) From
methodological point of view, we  combine both Hessian geomet-
rical features which are eigenvalues and eigenvectors to define a
robust new region growing criterion tailored to the coronary artery
segmentation problem. This criterion is integrated into a mulitscale
region growing algorithm ensuring the detection of different sized
vessels. (2) We  propose an evaluation database containing two
datasets with different challenging degrees, which allow the quan-
titative evaluation of the method in terms of region overlap,
sensitivity and precision. To the best of our knowledge, there is
no standard database available for this task. The only database
available in the literature was  proposed by [36] and was  designed
to evaluate centerline extraction methods rather than segmenta-
tion evaluation. (3) We  evaluate our method from two aspects,
which are the enhancement filter and the segmentation methods.
The remainder of this paper is organized as follows. In Section 2,
background concepts related to our approach are reviewed. Sec-
tion 3 illustrates the proposed method in detail. Experiments are
described in Section 4. Some illustrative results are given in Section
5. Section 6 presents discussion and concluding remarks.

2. Background on multiscale analysis

The idea of multiscale image analysis is to add a new dimension
to the analysis which is the image scale. The image is transformed
into a set of blurred images, each representing the original image,
but at a different scale [51]. These blurred images are obtained by
convolving the initial image I0(p) = I0(x, y) with a Gaussian kernel
to represent the information at a certain scale.

I�(p) = I�(x, y) = I0(x, y) ⊗ G�(x, y) (1)

where I� is an image of the scale space, p = (x, y) is a pixel loca-
tion, ⊗ represents the convolution operation and G�(x, y) is the 2D
Gaussian kernel with standard deviation � defined as:

G�(p) = G�(x, y) = 1√
2��2

exp − (x2 + y2)
2�2

(2)

where � ∈ � = {�min, . . .,  �max}, �min and �max are set according
to the approximate width of the smallest and largest vessel to be
detected [51].

In the scale space framework, differentiation is defined as a con-
volution with derivatives of Gaussian:(

∂n1+n2
I

∂xn1∂yn2

)
�

= I ⊗ ∂n1+n2
G�

∂xn1∂yn2
(3)
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