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a b s t r a c t

Why are human inferences sometimes remarkably close to the Bayesian ideal and other
times systematically biased? In particular, why do humans make near-rational inferences
in some natural domains where the candidate hypotheses are explicitly available, whereas
tasks in similar domains requiring the self-generation of hypotheses produce systematic
deviations from rational inference. We propose that these deviations arise from algorith-
mic processes approximating Bayes’ rule. Specifically in our account, hypotheses are gen-
erated stochastically from a sampling process, such that the sampled hypotheses form a
Monte Carlo approximation of the posterior. While this approximation will converge to
the true posterior in the limit of infinite samples, we take a small number of samples as
we expect that the number of samples humans take is limited. We show that this model
recreates several well-documented experimental findings such as anchoring and adjust-
ment, subadditivity, superadditivity, the crowd within as well as the self-generation effect,
the weak evidence, and the dud alternative effects. We confirm the model’s prediction that
superadditivity and subadditivity can be induced within the same paradigm by manipulat-
ing the unpacking and typicality of hypotheses. We also partially confirm our model’s pre-
diction about the effect of time pressure and cognitive load on these effects.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

In his preface to Astronomia Nova (1609), Johannes Kepler described how he struggled to find an accurate mathematical
description of planetary motion. Like most of his contemporaries, he started with the hypothesis that planets move in perfect
circles. This necessitated extraordinary labor to reconcile the equations of motion with his other assumptions, ‘‘because I had
bound them to millstones (as it were) of circularity, under the spell of common opinion.” It was not the case that Kepler sim-
ply favored circles over ellipses (which he ultimately accepted), since he considered several other alternatives prior to
ellipses. Kepler’s problem was that he failed to generate the right hypothesis.1

Kepler is not alone: the history of science is replete with examples of ‘‘unconceived alternatives” (Stanford, 2010), and
many psychological biases can be traced to failures of hypothesis generation, as we discuss below. In this paper, we focus
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1 In fact, Kepler had tried fitting an oval to his observations only to reject it, and then labored for another seven years before finally trying an ellipse and

realizing that it was mathematically equivalent to an oval. As he recounted, ‘‘The truth of nature, which I had rejected and chased away, returned by stealth
through the back door, disguising itself to be accepted. . . Ah, what a foolish bird I have been!”.
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on hypothesis generation in the extensively studied domain of probabilistic inference. The generated hypothesis are a subset
of a tremendously large space of possibilities. Our goal is to understand how humans generate that subset.

In general, probabilistic inference is comprised of two steps: hypothesis generation and hypothesis evaluation, with feed-
back between these two processes. Given a complete set of hypotheses H and observed data d, optimal evaluation is pre-
scribed by Bayes’ rule, which assigns a posterior probability PðhjdÞ to each hypothesis h 2 H proportional to its prior
probability PðhÞ and the likelihood of the observed data under h; PðdjhÞ:

PðhjdÞ ¼ PðdjhÞPðhÞP
h02HPðdjh0ÞPðh0Þ : ð1Þ

Many studies have found that when H is supplied explicitly, humans can come close to the Bayesian ideal (e.g. Frank &
Goodman, 2012; Griffiths & Tenenbaum, 2006, 2011; Oaksford & Chater, 2007; Petzschner, Glasauer, & Stephan, 2015).2

However, when humans must generate the set of hypotheses themselves, they cannot generate them all and instead generate
only a subset, leading to judgment biases (Carroll & Kemp, 2015; Dougherty & Hunter, 2003; Gettys & Fisher, 1979; Koriat,
Lichtenstein, & Fischhoff, 1980; Thomas, Dougherty, Sprenger, & Harbison, 2008; Weber, Böckenholt, Hilton, & Wallace,
1993). Some prominent biases of this kind are listed in Table 1.

Most previously proposed models of hypothesis generation rely on cued recall from memory based on similarity to pre-
viously observed scenarios (c.f. Gennaioli & Shleifer, 2010; Thomas et al., 2008). The probability of a generated hypothesis
depends on the strength of its memory, and the number of such hypotheses generated is constrained by the available work-
ing memory resources. However, in most naturally encountered combinatorial hypothesis spaces, the number of possible
hypotheses is vast and only ever sparsely observed. Goodman, Tenenbaum, Feldman, and Griffiths (2008) showed that, when
inferring Boolean concepts, people can generate previously unseen hypotheses by using compositional rules, instead of
likening the situation to previously observed situations. So it seems that humans do not generate hypotheses only from
the manageably small subset of previously observed hypotheses in memory and instead are able to generate hypotheses
from the formidably large combinatorial space of all the conceivable possibilities. Given how large this space is, resource
constraints at the time of inference suggest that only a subset are actually generated.

In this paper, we develop a normative theoretical framework for hypothesis generation in the domain of probabilistic
inference, given fixed data, arguing that the brain copes with the intractability of inference by stochastically sampling
hypotheses from the combinatorial space of possibilities (see also Sanborn & Chater, 2016). Although this sampling process
is asymptotically exact, time pressure and cognitive resource constraints limit the number of samples that can be generated,
giving rise to systematic biases. Such biases are ‘‘computationally rational” in the sense that they result from a trade-off
between the costs and benefits of computation—i.e., they are an emergent property of the expected utility calculus when
costs of computation are taken into account (Gershman, Horvitz, & Tenenbaum, 2015; Lieder, Griffiths, Huys, & Goodman,
2017a; Vul, Goodman, Griffiths, & Tenenbaum, 2014). We propose that the framing of a query leads to sampling specific
hypotheses first, which biases the rest of the hypothesis generation process through correlations in the sampling process.
We discuss the properties of various sampler designs to explore the space of possible algorithms, and choose a specific
design that can reproduce all the phenomena listed in Table 1. We then test our theory’s novel predictions in four
experiments.

2. A rational process model of hypothesis generation

Much of the recent work on probabilistic inference in human cognition has been deliberately agnostic about its under-
lying mechanisms, in order to make claims specifically about the subjective probability models people use in different
domains (Chater et al., 2006). Because the posterior distribution PðhjdÞ is completely determined by the joint distribution
Pðh; dÞ ¼ PðdjhÞPðhÞ, an idealized reasoner’s inferences can be perfectly predicted given this joint distribution. By comparing
different assumptions about the joint distribution (e.g., the choice of prior or likelihood) under these idealized conditions,
researchers have attempted to adjudicate between different models. Importantly, any algorithm that computes the exact
posterior will yield identical predictions, which is what licenses agnosticism about mechanism. This method of abstraction
is the essence of the ‘‘computational level of analysis” (Marr & Poggio, 1976), and is closely related to the competence/per-
formance distinction in linguistics and ‘‘as-if” explanations of choice behavior in economics.

The phenomena listed in Table 1 do not yield easily to a purely computational-level analysis, since different choices for
the probabilistic model do not account for the systematic errors in approximating them. For this reason, we turn to ‘‘rational
process” models (see Griffiths, Vul, & Sanborn, 2012, for a review), which make explicit claims about the mechanistic imple-
mentation of inference. Rational process models are designed to be approximations of the idealized reasoner, but make dis-
tinctive predictions under resource constraints. In particular, we explore how sample-based approximations lead to
particular cognitive biases in a large space of hypotheses, when the number of samples is limited. With an infinite number

2 This correspondence between human and Bayesian inference requires that the inference task must be one that is likely to have been optimized by evolution
(e.g., predicting the duration of everyday events, categorizing and locating objects in images, making causal inferences), typically in domains where people have
strong intuitive knowledge about the relative probabilities of hypotheses; asking humans to reason consciously about unnatural problems like randomness or
rare events (see Chater, Tenenbaum, & Yuille, 2006, for discussion), or carry out explicit updating calculations (Peterson & Beach, 1967), tends to produce
deviations from the Bayesian ideal.
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